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Abstract

This work is devoted to the study of rates of convergence of the empirical
measures μn = 1

n

∑n
k=1 δXk

, n ≥ 1, over a sample (Xk)k≥1 of independent iden-
tically distributed real-valued random variables towards the common distribution
μ in Kantorovich transport distances Wp. The focus is on finite range bounds on

the expected Kantorovich distances E(Wp(μn, μ)) or
[
E(W p

p (μn, μ))
]1/p

in terms of
moments and analytic conditions on the measure μ and its distribution function.
The study describes a variety of rates, from the standard one 1√

n
to slower rates,

and both lower and upper-bounds on E(Wp(μn, μ)) for fixed n in various instances.
Order statistics, reduction to uniform samples and analysis of beta distributions, in-
verse distribution functions, log-concavity are main tools in the investigation. Two
detailed appendices collect classical and some new facts on inverse distribution
functions and beta distributions and their densities necessary to the investigation.
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CHAPTER 1

Introduction

This work is devoted to an in-depth investigation of orders of growth of Kan-
torovich transport distances for one-dimensional empirical measures.

Let X be a real-valued random variable on some probability space (Ω,Σ,P),
with law (distribution) μ (which defines a Borel probability measure on R) and
distribution function

F (x) = μ
(
(−∞, x]

)
, x ∈ R.

Consider a sequence (Xk)k≥1 of independent copies of X thus with the same dis-

tribution μ, and, for each n ≥ 1, the (random) empirical measure

μn =
1

n

n∑
k=1

δXk
,

where δx is Dirac mass at the point x ∈ R. Denote by Fn the distribution function
of μn,

Fn(x) =
1

n

n∑
k=1

�(−∞,x](Xk), x ∈ R.

The classical limit theorems by Glivenko-Cantelli and Donsker ensure respec-
tively that, almost surely,

sup
x∈R

∣∣Fn(x)− F (x)
∣∣ → 0

and, weakly in the Skorokhod topology,
√
n

(
Fn(x)− F (x)

)
→ W o

(
F (x)

)
, x ∈ R,

where W o is a Brownian bridge (on [0, 1]).

This work is concerned with rates of convergence in the Kantorovich1 distances
Wp, p ≥ 1, of the empirical measures μn towards the theoretical distribution μ.

1In the literature, the distance Wp is also called the Monge-Kantorovich, or Kantorovich-
Rubinshtein, or Wasserstein transport distance, as well as the Fréchet distance (in case p = 2),
or a minimal distance. Recently, Vershik [Ve1] wrote an interesting historic essay explaining
why it is more fair to fix the name “Kantorovich distance” for all metrics like Wp (calling them
Kantorovich power metrics) according to the original reference [Ka1]. Some general topological
properties of W1 were studied in 1970 by Dobrushin [Do], who re-introduced this metric with
reference to [Vas]; apparently, that is why the name “Wasserstein distance” has become rather
traditional. As Vershik writes, “Leonid Vasershtein is a famous mathematician specializing in
algebraic K-theory and other areas of algebra and analysis, and ... he is absolutely not guilty of
this distortion of terminology, which occurs primarily in Western literature”. It should be noted
that the notation W for the quantities like Wp is the one used by Kantorovich in [Ka1], keeping

therefore a balance with the nowadays terminology!

1



2 1. INTRODUCTION

The Kantorovich transport distance Wp(μn, μ), p ≥ 1, between μn and μ is defined
by

W p
p (μn, μ) = inf

π

∫
R

∫
R

|x− y|p dπ(x, y),

where the infimum is taken over all probability measures π on the product space
R× R with respective marginals μn and μ.

More precisely, we focus in this work on the possible behaviour of the expected
Kantorovich distance E(Wp(μn, μ)) as a function of n, where p ≥ 1 is given. Note
that this distance is finite as long as∫ ∞

−∞
|x|pdμ(x) = E

(
|X|p

)
< ∞,

in which case it will be shown below that Wp(μn, μ) → 0 with probability one. The
rates at which μn → μ in Wp depends on a variety of hypotheses and properties on
the underlying distribution μ discussed here as completely as possible.

As such, these questions were only partially studied in the literature (as far as
we can tell). The asymptotic behaviour of Wp(μn, μ) for p = 1 and 2 has been inves-
tigated previously in papers by del Barrio, Giné, Matrán [B-G-M] and del Barrio,
Giné, Utzet [B-G-U], providing in particular necessary and sufficient conditions for
the weak convergence of Wp(μn, μ) (for these values of p) towards integrals of the
Brownian bridge under some regularity conditions on μ. The purpose of the present
work is rather the study of finite range bounds (that is, for n ≥ 1 large but fixed),
both upper and lower-bounds, on the expected Kantorovich distances E(Wp(μn, μ))
or E(W p

p (μn, μ)) for all p ≥ 1 and under fairly general assumptions on the distri-

bution μ. The functional central limit theorem
√
n (Fn(x) − F (x)) → W o(F (x))

already indicates that under proper assumptions the value of E(Wp(μn, μ)) should
have the rate of order 1√

n
(which is in general best possible). Therefore, we will

be in particular interested in conditions that ensure this “standard” rate. We next
present the various parts and summarize some of the main conclusions obtained
here.

The first chapter (Chapter 2) collects a number of standard results on the
Kantorovich transport distances Wp and the topology that they generate. Quantile
representations of Wp on the real line are also addressed there. The last para-
graph gathers some basic facts on the convergence of empirical measures in Wp

over a sample of independent identically distributed random variables towards the
common distribution.

Chapter 3 is devoted to the Kantorovich distance W1(μn, μ). It is shown in
particular that if E(|X|) < ∞, then E(W1(μn, μ)) → 0, but the convergence may
actually hold at an arbitrarily slow rate. On the other hand, the convergence
rate cannot be better than 1√

n
. This standard rate is reached under the moment

condition E(|X|2+δ) < ∞ for some δ > 0. In fact, a necessary and sufficient
condition for the standard rate is that

J1(μ) =

∫ ∞

−∞

√
F (x)(1− F (x)) dx < ∞.

Morever, explicit two-sided bounds, depending on n, for E(W1(μn, μ)) in terms of
the distribution function F may be provided. Connections with functional limit
theorems are also addressed.
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Chapter 4 investigates general order statistics and quantile representations of
Wp(μn, μ) which will be useful in the case p > 1. The classical reduction to the
uniform distribution via inverse distribution functions is presented, leading in par-
ticular to representations of Wp(μn, μ) in terms of beta distributions. On this
basis, a complete description of the rates for E(W p

p (μn, μ)) when μ is uniform may
be obtained.

The next Chapter 5 describes some main results. In particular, it will be proved
that for the property (standard rate)[

E
(
W p

p (μn, μ)
)]1/p ≤ c√

n

to hold with some constant c > 0, it is necessary and sufficient that μ be supported
and have an almost everywhere (a.e.) positive density f on some interval of the
real line (for the absolutely continuous component of μ), with finite integral

Jp(μ) =

∫ ∞

−∞

[F (x)(1− F (x))]p/2

f(x)p−1
dx =

∫ 1

0

(√
t(1− t)

I(t)

)p

dt.

In this case, the (generalized) inverse function F−1 of F has to be absolutely con-
tinuous on (0, 1) in the local sense, and then

I(t) = IF (t) =
1

(F−1)
′
(t))

, 0 < t < 1,

with (F−1)
′
being understood as a Radon-Nikodym derivative. Such I-functions

will play an important role in the analysis throughout this work. In fact I(t) =
f
(
F−1(t)

)
a.e. (where the density f should be specially defined when μ is not

absolutely continuous with respect to Lebesgue measure).
To reach this result, we first bound from above E(W p

p (μn, μ)) by the functional
Jp(μ). We then present analytic assumptions on the I-function IF (t), 0 < t < 1, in

order for the latter to be finite. For example, if I(t) ≥ c
√
t(1− t) for some constant

c > 0, or equivalently, if μ represents a Lipschitz transform of the beta distribution
with parameters α = β = 2, then Jp(μ) < ∞, for all p ≥ 1. If I(t) ≥ ct(1 − t) for
some constant c > 0, i.e. μ has a positive Cheeger’s constant, or equivalently, if μ
is a Lipschitz transform of the two-sided exponential distribution, then Jp(μ) < ∞,
for all 1 ≤ p < 2.

To show the necessity of the condition Jp(μ) < ∞ for the standard rate to
hold, we first establish the connectedness of μ and the absolute continuity of the
inverse distribution function F−1. A further study of beta distributions (which is
postponed to Appendix B) will allow us to reach a lower bound

lim inf
n→∞

√
n E

(
Wp(μn, μ)

)
≥ c J1/p

p (μ)

holding with some absolute constant c > 0. The chapter is concluded by a first
study of the standard rate for the distance W∞.

Quite a bit of work is devoted to the family of log-concave measures μ as pre-
sented in Chapter 6. This study relies in particular on precise bounds on variances
of order statistics in particular via the associated I-functions. As a sample of re-
sults, it will be established in this case that the value E(W p

p (μn, μ)) is approximately
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given by

1

np/2

∫ n/(n+1)

1/(n+1)

(√
t(1− t)

I(t)

)p

dt.

Bounds in terms of the variance of μ may also be achieved. They will imply, for

instance, that
[
E(W p

p (μn, μ))
]1/p

= O( 1√
n
) whenever 1 ≤ p < 2, and[

E(W p
p (μn, μ))

]1/p
= O(

1

n1/p
)

for p > 2. In addition, [
E

(
W 2

2 (μn, μ)
)]1/2

= O

(√
log n

n

)
.

Nevertheless,
[
E(W 2

2 (μn, μ))
]1/2

= O( 1√
n
) for compactly supported log-concave μ.

A variety of examples, from Gaussian to beta distributions, illustrate the conclu-
sions.

Chapter 7 collects miscellaneous bounds and results, supplementing the pre-
ceding conclusions. If μ satisfies a Poincaré-type inequality, one can control de-
viations of Wp(μn, μ) from the mean E(Wp(μn, μ)). In particular in this case,[
E(W p

p (μn, μ))
]1/p

and EWp(μn, μ) are of the same order, whenever 1 ≤ p ≤ 2.
They are of the same order also for p > 2 if μ is log-concave.

If μ is compactly supported on an interval of length c, then for any p ≥ 1,[
E

(
W p

p (μn, μ)
)]1/p ≤ c

n1/2p

(which may not be improved in this class). If the support of μ is not an interval,
then, for any p > 1, there is the lower-bound

E
(
Wp(μn, μ)

)
≥ c

n1/2p
,

where the constant does not depend on n. These results indicate in particular that

the standard rate
[
E(W p

p (μn, μ))
]1/p

= O( 1√
n
) cannot be obtained under moment-

type conditions. On the other hand, by developing ideas of Ebralidze [Eb] providing
moment bounds on the Kantorovich distance Wp, it may be shown that, for every
p ≥ 1,

E
(
W p

p (μn, μ)
)
= O

(
1√
n

)
as soon as E(|X|s) < ∞ for some s > 2p.

The particular case p = ∞ deserves some special investigation. In addition
to the conclusions in Chapter 5, it may be proved that E(W∞(μn, μ)) → 0 if and
only if the support of μ is a finite closed interval. The same property characterizes
the convergence in probability and almost surely. For the standard rate to hold, it
is necessary and sufficient that μ be supported and have a density on some finite
interval, which is separated from zero.

The results developed in this work require a somewhat in-depth analysis of
distribution functions and their inverses, as well as of several regularity properties.
Another main tool is provided by order statistics, and, after reduction to the uni-
form distribution, to refined properties of beta distributions and their densities.
The two appendices aims at fully supplementing all the analytical results necessary
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to the investigation and results presented in the core of the text. Appendix A is
devoted to inverse functions, and the associated I-functions. Appendix B on the
other hand is concerned with various aspects of beta distributions, from their log-
concavity and spectral gap properties to refined bounds on their densities. While
a number of results contained in these appendices are classical, some of them are
new. Besides, we found it convenient to collect all these conclusions in a coherent
way towards the results developed in the core of the text.

It should be mentioned that we do not address in this work the correspond-
ing analysis for samples of vector-valued random variables (Xk)k≥1 which leads
to delicate questions and methods of different nature, as illustrated for example in
the papers [A-K-T,T1,T-Y,DY95,Yuk98,B-G-V,Boi,BB13,B-M1,B-M2]...
Nevertheless, the recent works [D-S-S] and [FG15] achieve moment estimates in
higher dimension suitably extending the conclusions of Section 7.5 while [A-S-T],
using pde methods, reaches the exact asymptotic behaviour of E(W 2

2 (μn, μ)) for
the uniform distribution in dimension 2. Besides, the articles [B-M1,B-M2] in-
vestigate some of these questions in the context of partial transport for which one-
dimensional results might be transferred to higher dimension. Note that there is
also an intensive literature devoted to the study of empirical measures for dependent
data. For example, the papers [Ki,Se,Yo] focus on the approximation problems of
μn by μ under mixing conditions on the sequence (Xk)k≥1, while [B-G] develops an
investigation under analytic conditions on the distribution of the sample. Another
fruitful modern direction deals with spectral empirical measures. They correspond
to dependent observations (Xk)k≥1 that appear as spectra of large random matrices.

See e.g. [A-G-Z,P-S,B-G-T,C-L,Dal,M-M].

The standard probabilistic data of this work, common to most sections, will
be a real-valued random variable X on some probability space (Ω,Σ,P) with (law)
distribution μ, and distribution function F (x) = μ((−∞, x]), x ∈ R. The proba-
bility measure μ is said to be degenerate if it is a Dirac mass. If X has a second
moment, the variance E(X2)− (E(X))2 is denoted by Var(X). A median m of X
(or μ) is a real number such that P{X ≤ m} ≥ 1

2 and P{X ≥ m} ≥ 1
2 .

Given a sequence (Xk)k≥1, of independent copies of X, μn is the (random)
empirical measure

μn =
1

n

n∑
k=1

δXk
, n ≥ 1,

with associated (random) distribution function

Fn(x) =
1

n

n∑
k=1

�(−∞,x](Xk), x ∈ R.

We usually denote by U a uniform random variable on (0, 1), with associated sample
(Uk)k≥1.

Given a Borel probability measure μ with distribution function F , several an-
alytic statements will involve the inverse distribution function

F−1(t) = inf
{
x ∈ R : F (x) ≥ t

}
, 0 < t < 1,

as well as the associated I-functions

I(t) = IF (t) =
1

(F−1)′(t)
, 0 < t < 1.
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The function IF is well-defined a.e. as long as F−1 is absolutely continuous on

(0, 1), and then (F−1)
′
denotes the corresponding Radon-Nikodym derivative. We

refer to Appendix A for complete details in this regard.
As is common, we abbreviate “almost everywhere” in “a.e.” (with respect to

Lebesgue measure on R) and “almost surely” in “a.s.”.

Acknowledgement. We thank E. del Barrio, A. Guillin, E. Rio, J. Wellner
for pointing out several related references, and P. Kolli for corrections. This work
started in June 2011 during the visit of the first author at the University of Toulouse,
France, and he is grateful for the hospitality. The work was continued in the Fall
2013 when both authors stayed at the Simons Institute, Berkeley, USA. The authors
would like to thank the Institute for this opportunity. The work of the first author
was also supported by the Simons Foundation and NSF grant DMS-1855575.



CHAPTER 2

Generalities on Kantorovich transport distances

This chapter introduces the basic Kantorovich transport distancesWp and their
first properties. The latter are first discussed in the general framework of metric
spaces. Specific representations on the real line are emphasized next via inverse
distribution functions (or quantiles). In the last paragraph, convergence of empirical
measures over a sample of independent identically distributed random variables in
Kantorovich distances are presented.

General references on Kantorovich transport distances mostly covering the ma-
terial summarized here are the books [R-R] by Rachev and Rüschendorf and
[Vi1,Vi2] by Villani, to which we refer for more details. See also [Du1] and
[S-W,C-H] in the context of empirical measures and quantile processes.

2.1. Kantorovich transport distance Wp

Given a separable metric space (E, d), let Z(E, d) denote the space of all Borel
probability measures μ on E. For p ≥ 1, denote by Zp(E, d), or just Zp(E) when
the underlying metric d is clear from the context, the collection of all probability
measures μ in Z(E, d) such that∫

E

d(x, x0)
p dμ(x) < ∞

for some, or equivalently all, x0 ∈ E. The space Zp(E, d) may be described as the
family of all Borel probability measures μ on E with a finite p-th moment.

Definition 2.1 (Kantorovich transport distance Wp). For μ, ν ∈ Z(E, d), de-
fine the quantity Wp(μ, ν) ≥ 0 by

W p
p (μ, ν) = inf

π

∫
E

∫
E

d(x, y)p dπ(x, y),

where the infimum is taken over all probability measures π on the product space
E ×E (equipped with the product σ-algebra) with marginals μ and ν in the sense
that

π(A× E) = μ(A), π(E ×B) = ν(B),

for all Borel sets A,B ⊂ E. The value Wp(μ, ν) will be called the Kantorovich
(transport) distance of order p between μ and ν.

Most important particular orders are p = 1 and p = 2. The value W2 may be
referred to as the quadratic Kantorovich distance. Of a certain interest is also the
limit case

W∞(μ, ν) = lim
p→∞

Wp(μ, ν) = sup
p≥1

Wp(μ, ν),

7



8 2. GENERALITIES ON KANTOROVICH TRANSPORT DISTANCES

which is natural to be considered in the space Z∞(E, d) of all Borel probability
measures on E with bounded support.

The number W p
p (μ, ν) is often interpreted as the minimal cost needed to trans-

port the measure μ to ν, provided that the cost for transportation of a “particle”
x ∈ E to any “particle” y ∈ E is equal to d(x, y)p. Definition 2.1 is usually ap-
plied to the measures in Zp(E, d), which guarantees that Wp(μ, ν) is finite. Note
that if one of these measures has a finite p-th moment, and Wp(μ, ν) is finite, then
necessarily the other measure must have a finite p-th moment.

It is known that Wp is indeed a metric in the space Zp(E, d), at least when
(E, d) is separable and complete (Polish). The proof of the triangle inequality for
Wp is based on the so-called glueing lemma, which is discussed in detail in [Du2],
pp. 7-10, cf. also [Vi1], pp. 207-208.

Example 2.2. For x, y ∈ E, consider the mass points or delta-measures μ = δx,
ν = δy. Then it is easy to see that

Wp(δx, δy) = d(x, y).

Hence, (E, d) is isometrically embedded in each Zp(E, d) via the map x → δx.

Example 2.3. For x, y ∈ E and 0 ≤ a, b ≤ 1, consider the Bernoulli measures

μ = aδx + (1− a)δy, ν = bδx + (1− b)δy.

Then

Wp(μ, ν) = |a− b|1/p d(x, y).
This formula is of course consistent with the previous example of delta-measures in
the particular case a = 1, b = 0. To prove the above equality in the general case,
assume that x 
= y. Let π be a probability measure on E × E with marginals μ
and ν. Necessarily, it is concentrated on the 4 point set {(x, x), (x, y), (y, x), (y, y)},
assigning some probabilities, say, π1, π2, π3, π4, respectively. The requirement that
π has marginals μ and ν is equivalent to the relations

π1 + π2 = μ
(
{x}

)
= a,

π1 + π3 = ν
(
{x}

)
= b,

under which we need to minimize the integral∫
E

∫
E

d(x, y)p dπ(x, y) = (π2 + π3) d(x, y)
p.

If a ≥ b, the minimum is obviously attained for π3 = 0, π1 = b and π2 = a− b, and
in this case it is equal to (a− b) d(x, y)p.

Remark 2.4. It also natural to consider more general transport functionals,
such as

W (μ, ν) = inf
π

∫
E

∫
E

c(x, y) dπ(x, y)

where c is a given non-negative (cost) function on E×E, and the infimum is taken
over all probability measures π on E×E with respective marginals μ and ν, as be-
fore. In connection with the problem of mass transportation, such functionals were
introduced in 1942 by Kantorovich in [Ka1], cf. also [Ka2,K-A]. Assuming that
(E, d) is compact and c = d (and using the same notation W ), he proved that the
above infimum is attained at some probability measure π0, which is characterized
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by the following properties: There exists a function U on E (called a potential)
such that

a) |U(x)− U(y)| ≤ d(x, y) for all x, y ∈ E;

b) U(x)− U(y) = d(x, y) for all x, y in the support of π0.

As a direct consequence,

W (μ, ν) =

∫
E

U dμ−
∫
E

U dν = max

∣∣∣∣ ∫
E

u dμ−
∫
E

u dν

∣∣∣∣,
where the maximum is over all functions u obeying the property a).

In particular, the functional W gives rise to a metric. As Kantorovich remarks
in [Ka1], this way to introduce the metric in the space of distributions looks most
natural. In a bit more general setting, part of his theorem may be stated as follows.

Theorem 2.5 (Kantorovich duality theorem). Given a separable metric space
(E, d), for all μ, ν ∈ Z1(E, d),

W1(μ, ν) = sup
‖u‖Lip≤1

∣∣∣∣ ∫
E

u dμ−
∫
E

u dν

∣∣∣∣
where the supremum is taken over all Lipschitz functions u : E → R with Lipschitz
semi-norm ‖u‖Lip ≤ 1.

After the work [K-R] in 1958, also dealing with a compact space setting, The-
orem 2.5 is now referred to as the Kantorovich-Rubinstein theorem. See [Ra,Du1]
for the proof and the history of the duality problems, and [B-K] for a recent sur-
vey on the state of the art of the research connected to the Monge-Kantorovich
problem.

2.2. Topology generated by Wp

Once the transport distances are introduced, a natural question is “What topol-
ogy do they generate?” In many practical situations, we actually deal with the
topology of the weak convergence of probability measures.

Recall that a sequence (μn)n∈N
in Z(E, d) is weakly convergent to μ in Z(E, d)

if ∫
E

u dμn →
∫
E

u dμ as n → ∞

for any bounded continuous function u on E. This convergence is metrized, for
example, by the Lévy-Prokhorov metric, defined for all μ and ν in Z(E, d) by

ρ(μ, ν) = inf
{
h > 0 : μ(A) ≤ ν(Ah) + h for all Borel sets A ⊂ E

}
.

Here Ah = {x ∈ E : d(x,A) < h} denotes the open h-neighbourhood of A with
respect to the metric d.

Equivalent definitions and basic general results on the weak convergence and
the associated weak topology on Z(E, d) may be found in the book of Billingsley
[Bi]. To clarify the meaning of the convergence with respect to Wp, we quote a
theorem from [Vi1], p. 212, cf. also [Do] and [S-W].
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Theorem 2.6 (Convergence in Wp). Let 1 ≤ p < ∞. Given μ ∈ Zp(E, d) and
a sequence (μn)n∈N

∈ Zp(E, d) on a Polish space (E, d), the following properties
are equivalent:

a) Wp(μn, μ) → 0 as n → ∞ ;

b) μn → μ weakly and for some, or equivalently all, x0 ∈ E,∫
E

d(x, x0)
p dμn(x) →

∫
E

d(x, x0)
p dμ(x);

c) For any continuous function u : E → R, satisfying the growth condition
|u(x)| ≤ C(1 + d(x, x0))

p, x ∈ E, with some point x0 ∈ E and a constant C ≥ 0,∫
E

u(x) dμn(x) →
∫
E

u(x) dμ(x).

This description shows that the convergence in (Zp,Wp) is stronger than the
standard weak convergence. Alternatively, one may use an elementary relation
between the Lévy-Prokhorov and Kantorovich transport distances (which in case
p = 1 was emphasized in [Do]).

Theorem 2.7. For all μ, ν ∈ Z(E, d) and p ≥ 1,

ρ(μ, ν) ≤
(
Wp(μ, ν)

)p/(p+1)
.

In particular ρ(μ, ν) ≤ W∞(μ, ν).

Proof. Suppose that μ(A) ≥ ν(Ah) + h for some h > 0 and some Borel set A
in E. Then, for any probability measure π on E × E with marginals μ and ν,∫

E

∫
E

d(x, y)p dπ(x, y) ≥
∫
A

∫
E\Ah

d(x, y)p dπ(x, y)

≥ hp π
(
A× E ∩ E × (E \Ah)

)
≥ hp

(
μ(A)− ν(Ah)

)
≥ hp+1.

Hence W p
p (μ, ν) ≥ hp+1(μ, ν) as announced. �

If the metric d is bounded, Zp consists of all Borel probability measures on E,
and each Wp metrizes the topology of the weak convergence according to Theo-
rem 2.6. Otherwise, the topology in (Zp,Wp) is strictly stronger. Indeed, if xn,
n ≥ 1, and x0 are elements of E, and if rn = d(xn, x0) → ∞ as n → ∞ (rn > 1),
let

μn = (1− r−p
n ) δx0

+ r−p
n δxn

, μ = δx0
.

Then μn → μ weakly while Wp(μn, μ) = 1 for all n ≥ 1 according to Example 2.3
so that there is no convergence with respect to Wp.

Nevertheless, by Theorem 2.6, the topology generated by Wp and the weak
topology do coincide on any subset K of Zp(E, d) possessing the property

lim
R→∞

sup
μ∈K

∫
{d(x,x0)>R}

d(x, x0)
p dμ(x) = 0
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with x0 ∈ E fixed. For example, given C > 0 and p0 > p, one may consider the set
K of all Borel probability measures μ on (E, d) such that∫

E

d(x, x0)
p0 dμ(x) ≤ C.

In particular, the metric W1, when it is used for the set K of all probability dis-
tributions μ on E = R with

∫ ∞
−∞ x2 dμ(x) = 1, generates the topology of weak

convergence in K. Moreover, in this case, by Prokhorov’s compactness criterion,
this set will be compact for this topology.

The topology generated by W∞ is however much stronger than the weak topol-
ogy, even if they are compared on compactly supported measures. As noticed in
[Ve2], this metric was in essence considered by Strassen [Str]. Using his results
on nearby variables with nearby laws, one can give a description of W∞ which is
formally rather close to the Lévy-Prokhorov metric.

Theorem 2.8 (Topology generated by W∞). For all μ, ν ∈ Z(E, d) on a Polish
space (E, d),

W∞(μ, ν) = inf
{
h > 0 : μ(A) ≤ ν(Ah) for all Borel sets A ⊂ E

}
.

Proof. From Definition 2.1,

(2.1) W∞(μ, ν) = sup
p≥1

Wp(μ, ν) = sup
p≥1

inf
π

‖d‖Lp(π) ≤ inf
π

‖d‖L∞(π)

where the infimum is taken over the set K(μ, ν) of all probability measures π on
E × E with marginals μ and ν (couplings), and where ‖d‖Lp(π) and ‖d‖L∞(π) =
ess sup d(x, y) are the usual Lp and L∞ norms with respect to π.

The inequality (2.1) may actually be reversed. Since the space (E, d) is Polish,
the set K(μ, ν) is compact in Z(E, d). Indeed, all finite Borel measures on E are
Radon, so, given ε > 0, one can choose a compact set Kε ⊂ E with μ(Kε) > 1− ε
and ν(Kε) > 1 − ε. It then readily follows that π(Kε × Kε) > 1 − 2ε for any
π ∈ K(μ, ν). It remains to apply Prokhorov’s compactness criterion and use the
property that K(μ, ν) is a closed subset in Z(E, d).

Now, assume that W∞(μ, ν) < h. For any n ≥ 1, there is πn ∈ K(μ, ν) such
that ‖d‖Ln(πn) < h. In particular, for all 1 ≤ p ≤ n,∫ ∞

0

πn(d > r1/p) dr =

∫
E

∫
E

d(x, y)p dπn(x, y) < hp.

Assume that πn → π weakly in K(μ, ν) (otherwise take a convergent subsequence).
Since the sets U(r) = {(x, y) : d(x, y) > r1/p}, r > 0, are open in E × E, we have
π(U(r)) ≤ lim infn→∞ πn(U(r)), so, by Fatou’s lemma,∫

E

∫
E

d(x, y)p dπ(x, y) ≤ hp.

Hence ‖d‖Lp(π) ≤ h for all p ≥ 1, and thus ‖d‖Lp(π) ≤ W∞(μ, ν). Recalling (2.1),
this shows that W∞(μ, ν) = infπ ‖d‖L∞(π).

To conclude the proof, it is time to involve Strassen’s theorem which we quote
from [Du1], p. 319. Put Ah = {x ∈ E : d(x,A) ≤ h}. If the metric space (E, d)
is separable, and h ≥ 0, β ≥ 0 are fixed, then the following two properties are
equivalent:
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a) For any closed set A in E, μ(A) ≤ ν(Ah) + β;
b) For any α > h, there is π ∈ K(μ, ν) such that π{d > α} ≤ β.

If (E, d) is Polish, the latter property with β = 0 reads ‖d‖L∞(π) ≤ h. Note also

that Ah = (closA)h and Ah ⊂ Ah ⊂ Ah+ε for any ε > 0. The proof is complete. �

2.3. Representations for Wp on the real line

There are several results concerning various representations for the transport
distances Wp. In the case p = 1, the representation in the Kantorovich-Rubinstein
theorem when it is specialized to the real line E = R may considerably be simplified
and stated explicitly in terms of the distribution functions F (x) = μ((−∞, x]),
x ∈ R, associated to probability measures μ. More precisely, Theorem 2.5 easily
yields the following description of W1.

Theorem 2.9 (Representation for W1). Let μ and ν be probability measures in
Z1(R) with respective distribution functions F and G. Then

W1(μ, ν) =

∫ ∞

−∞

∣∣F (x)−G(x)
∣∣ dx.

This formula was apparently first obtained by Dall’Aglio ([Da], cf. also [Val]).
There is also a representation for Wp of a similar nature in case p ≥ 1. It is

however given not like the Lp-distance between F and G, but involves the inverse
distribution functions

(2.2) F−1(t) = inf
{
x ∈ R : F (x) ≥ t

}
, 0 < t < 1.

The next fundamental identity can be found in [C-S-S,Ru], Theorem 2.

Theorem 2.10 (Representation for Wp). Let μ and ν be probability measures
in Zp(R), p ≥ 1, with respective distribution functions F and G. Then

W p
p (μ, ν) =

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣p dt.

In particular,∫ ∞

−∞

∣∣F (x)−G(x)
∣∣ dx =

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣ dt.

This equality was already emphasized by Prokhorov [P].
The inverse distribution functions will be discussed in more details in Appen-

dix A (where a simple argument leading to Theorem 2.10 will be described). At
this point, let us only mention that any such function is non-decreasing and left-
continuous. In particular, the infimum in the definition (2.2) of F−1 is always
attained.

Since the inverse functions might happen to be less convenient in applications
in comparison with the usual distribution functions, one may wonder whether one
can give an explicit formula in the spirit of Theorem 2.9. Let us state one such
formula for the important case p = 2, which was kindly communicated to us by
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E. del Barrio. We adopt the standard notations x∧y = min{x, y}, x∨y = max{x, y}
and x+ = x ∨ 0 for real numbers x, y.

Theorem 2.11 (Representation for W2). Let μ and ν be probability measures
in Z2(R) with respective distribution functions F and G. Then

W 2
2 (μ, ν) =

∫ ∞

−∞

∫ ∞

−∞

(
F (x ∧ y)−G(x ∨ y)

)+
dx dy

+

∫ ∞

−∞

∫ ∞

−∞

(
G(x ∧ y)− F (x ∨ y)

)+
dx dy.

Both integrands on the right-hand side are symmetric under the reflection
(x, y) �→ (y, x), so, one may also write a more compact expression

W 2
2 (μ, ν) = 2

∫∫
x≤y

[(
F (x)−G(y)

)+
+

(
G(x)− F (y)

)+]
dx dy.

Proof. Let us explain how to derive this formula from Theorem 2.10, i.e.

W 2
2 (μ, ν) =

∫ 1

0

(
F−1(t)−G−1(t)

)2
dt.

Using a simple approximation argument (to handle the convergence in the space
Z2(R)), it may be assumed that μ and ν are regular in the sense that they are sup-
ported and have positive continuous densities f and g on some intervals,
say, (a, b) and (c, d), which may be bounded or not. The inverse functions
F−1 : (0, 1) → (a, b) and G−1 : (0, 1) → (c, d) are then well-defined in the usual
sense and are continuously differentiable with positive derivatives. Moreover, in
terms of the function I(t) = f(F−1(t)), 0 < t < 1,

F−1(t)−G−1(t) = F−1(t)− F−1(F (G−1(t))) =

∫ t

F (G−1(t))

du

I(u)

so that

(F−1(t)−G−1(t))2 =

∫ t

F (G−1(t))

∫ t

F (G−1(t))

du dv

I(u) I(v)
.

Now, integrate this equality over t ∈ (0, 1), keeping the values u and v fixed.
Put R(t) = G(F−1(t)) and distinguish between the case F (G−1(t)) < t and
F (G−1(t)) > t.

Case 1: F (G−1(t)) < u, v < t. These inequalities are solved as t < R(u ∧ v)
and t > u∨ v, which represents an interval of length (R(u∧ v)−u∨ v)+ which may
be empty or not.

Case 2: t < u, v < F (G−1(t)). These inequalities are solved as t < u ∧ v and
t > R(u∨v), which represents and interval of length (u∧v−R(u∨v))+ which may
also be empty.

Therefore, collecting the two cases together, we have after integration that∫ 1

0

(
F−1(t)−G−1(t)

)2
dt =

∫ 1

0

∫ 1

0

(
R(u ∧ v)− u ∨ v

)+ du dv

I(u) I(v)

+

∫ 1

0

∫ 1

0

(
u ∧ v −R(u ∨ v)

)+ du dv

I(u) I(v)
.
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Now, make the substitution u = F (x), v = F (y). Since R(u) = G(x), R(v) = G(y),
and I(u) = f(x), I(v) = f(y), and thus du

I(u) = dx, dv
I(v) = dy, we get∫ 1

0

(
F−1(t)−G−1(t)

)2
dt =

∫ b

a

∫ b

a

(
G(x ∧ y)− F (x ∨ y)

)+
dx dy

+

∫ b

a

∫ b

a

(
F (x ∧ y)−G(x ∨ y)

)+
dx dy

which is the announced claim. �

For another explicit example, let p → ∞ in Theorem 2.10 so to obtain the
representation

(2.3) W∞(μ, ν) = sup
0<t<1

∣∣F−1(t)−G−1(t)
∣∣.

Changing the variables, we arrive at the following refinement of Theorem 2.8. Recall
that Z∞(R) denotes the collection of all compactly supported probability measures
on R.

Theorem 2.12 (Representation for W∞). Let μ and ν be probability measures
in Z∞(R) with respective distribution functions F and G. Then, W∞(μ, ν) is the
infimum over all h ≥ 0 such that

G(x− h) ≤ F (x) ≤ G(x+ h) for all x ∈ R.

The last description resembles the Lévy distance L(μ, ν), which is defined as
the infimum over all h ≥ 0 such that

G(x− h)− h ≤ F (x) ≤ G(x+ h) + h for all x ∈ R.

This metric metrizes the weak topology in the whole space Z(R). In view of the
obvious relation L ≤ W∞, the metric W∞ is stronger. In fact, even being restricted
to probability measures supported on a common finite interval, the topology gen-
erated by W∞ is strictly stronger than the weak topology. Let, for example, μn,
n ≥ 1, be a sequence of probability measures on [0, 1] with distribution functions
Fn(x) = x1/n (0 ≤ x ≤ 1). Then μn → μ = δ0 weakly, and so L(μn, μ) → 0, while
W∞(μn, μ) = 1 for all n ≥ 1.

Proof of Theorem 2.12. The statement remains to hold for arbitrary probability
measures μ and ν on the real line R. To see this, one can apply the representation
(2.3) for W∞(μ, ν).

By the properties of inverse functions (cf. Lemma A.3 of Appendix A), t ≤ F (x)
if and only if F−1(t) ≤ x for all t ∈ (0, 1] and x ∈ R (with the convention that
F−1(1) = F−1(1−)). In particular, F ((F−1(t)) ≥ t and F−1(F (x)) ≤ x in case
F (x) > 0.

Assume first that sup0<t<1 |F−1(t)−G−1(t)| ≤ h for a finite value h ≥ 0 and
let us show that

F (x) ≤ G(x+ h).

If F (x) = 0, there is nothing to prove, so let F (x) > 0. Since G−1(t) ≤ F−1(t)+h,
we get t ≤ G(F−1(t) + h). For t = F (x), this gives F (x) ≤ G(x+ h). By a similar
argument, G(x) ≤ F (x+ h), so W∞(μ, ν) ≤ h.
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Conversely, assume that G(x − h) ≤ F (x) ≤ G(x + h) for all x. The second
inequality yields G−1(F (x)) ≤ x + h provided that G(x + h) > 0. This condition
is fulfilled for x = F−1(t) with t ∈ (0, 1), since then G(x+ h) ≥ F (x) ≥ t. Hence,
G−1(t) ≤ F−1(t) + h. Similarly, F−1(t) ≤ G−1(t) + h. �

2.4. Empirical measures

In this section, we recall the basic convergence of empirical measures over a
sample of independent and identically distributed random variables towards the
common distribution and address the question of bounds in the Kantorovich dis-
tances Wp. We refer to [S-W,Du1,C-H] for standard references on the topic of
convergence of empirical measures, in particular for real-valued samples and their
interplay with the quantile processes.

Let X be a random element in the metric space (E, d) with law μ, and let
(Xk)k≥1 be a sequence of independent copies ofX. Consider the empirical measures

μn =
1

n

n∑
k=1

δXk
, n ≥ 1,

which therefore define random probability measures on (E, d).
A well-known theorem of Varadarajan asserts that, if (E, d) is separable, then,

with probability one, μn → μ weakly (cf. [Var] or [Du1], p. 313). Equivalently,
with probability one, ρ(μn, μ) → 0 as n → ∞, where for ρ one may take, for
example, the Lévy-Prokhorov metric in the space of all Borel probability measures
on E. As a full analogue, the following assertion is also valid.

Theorem 2.13 (Convergence of empirical measures). Assume that the metric
space (E, d) is separable. If μ ∈ Zp(E, d) for p ≥ 1, then, with probability one,
Wp(μn, μ) → 0 as n → ∞.

Indeed, using Varadarajan’s theorem and Theorem 2.6, it is enough to verify
that, with probability one, and any x0 ∈ E,∫

E

d(x, x0)
p dμn(x) =

1

n

n∑
k=1

d(Xk, x0)
p →

∫
E

d(x, x0)
p dμ(x) = E

(
d(X, x0)

p
)
.

But the latter does hold by the strong law of large numbers completing therefore
the proof of Theorem 2.13.

On the basis of Theorem 2.13, a general question of interest investigated here
is the rates of convergence of the empirical measures μn to the limit μ with respect
to Kantorovich distances Wp, with probability one or in distribution. In fact, a
main focus here will be to explore bounds on the mean distances E(Wp(μn, μ)) or
E(W p

p (μn, μ)). These notes will be furthermore restricted to the particular, but
important, scenario where E is the real line R.

For a first natural step, it would already be good to see that these average
distances do tend to zero. And indeed, Theorem 2.13 may be complemented with
the following statement which, however, is not completely immediate.
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Theorem 2.14 (Convergence of empirical measures in Wp). For any μ ∈ Zp(R)
and 1 ≤ p < ∞, E(W p

p (μn, μ)) → 0 as n → ∞.

In particular, E(Wp(μn, μ)) → 0. As we will see later on, this property, as
well as Theorem 2.13 are no longer true for arbitrary μ ∈ Z∞(R) in the limit case
p = ∞.

To address the proof of Theorem 2.14, consider the distribution function F (x) =
μ
(
(−∞, x]

)
= P{X ≤ x}, x ∈ R, of μ (or X) and the associated empirical distri-

bution functions on a sample (Xk)k≥1 of independent copies of X,

Fn(x) =
1

n

n∑
k=1

�{Xk≤x}, x ∈ R, n ≥ 1.

Proof. To begin with, we present a proof of the simpler case p = 1 for which
we describe an additional argument separately from the general case. This argu-
ment is based on the representation

W1(μn, μ) =

∫ ∞

−∞

∣∣Fn(x)− F (x)
∣∣ dx

from Theorem 2.9.
Denote by (Ω,Σ,P) the probability space where all random variablesXn, n ≥ 1,

are defined. Let λ stand for the Lebesgue measure on the real line and let ν = λ⊗P

be the product measure on the product space R× Ω. Since

E

(∫ ∞

−∞

(
Fn(x)− F (x)

)
dx

)
=

∫ ∞

−∞

∫
Ω

(
Fn(x, ω)− F (x)

)
dν(x, ω) = 0,

for any a ∈ R,

E
(
W1(μn, μ)

)
= 2

∫ ∞

−∞

∫
Ω

(
Fn(x, ω)− F (x)

)+
dν(x, ω)

≤ 2

∫ a

−∞

∫
Ω

Fn(x, ω) dν(x, ω) + 2

∫ ∞

a

∫
Ω

(
Fn(x, ω)− F (x)

)+
dν(x, ω)

= 2

∫ a

−∞
F (x) dx+ 2

∫ ∞

a

∫
Ω

(
Fn(x, ω)− F (x)

)+
dν(x, ω),

where we used that E(Fn(x)) = F (x) in the last step.
Now, fix ε > 0 and choose a ∈ R such that

∫ a

−∞ F (x) dx < ε. As for the

second integral over x > a, one may use the bound (Fn(x, ω)−F (x))+ ≤ 1−F (x).
The latter function is integrable on (a,∞) and serves as an integrable majorant on
(a,∞)×Ω for the sequence (Fn(x, ω)−F (x))+. Hence, by the Lebesgue dominated
convergence theorem,∫ ∞

a

∫
Ω

(
Fn(x, ω)− F (x)

)+
dν(x, ω) → 0

as n → ∞. Therefore, there exists n0 such that for all n ≥ n0 all such integrals are
smaller than ε. As a result, E(W1(μn, μ)) < 4ε for all n ≥ n0. The claim follows.

Note that a different proof in this case p = 1 also follows from Theorem 3.5 in
the next chapter.
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We next address the general case p ≥ 1. We start this time from the represen-
tation in Theorem 2.10 which gives, for any n ≥ 1,

E
(
W p

p (μn, μ)
)
=

∫ 1

0

E
(∣∣F−1

n (t)− F−1(t)
∣∣p) dt.

First we show that, for any fixed t0 ∈ (0, 12 ),

(2.4)

∫ 1−t0

t0

E
(∣∣F−1

n (t)− F−1(t)
∣∣p) dt → 0

as n → ∞. To this end, using the Lebesgue dominated convergence theorem
and the property that F−1

n (t) → F−1(t) for any point t of continuity of F−1

(cf. Lemma A.5), it will be sufficient to see that the random variables

M(t) = sup
n≥1

∣∣F−1
n (t)

∣∣, t0 ≤ t ≤ 1− t0,

have Lp(Ω,P)-norms bounded by a quantity which is independent of t.
Choose x0 > 0 such that μ([x0,∞))+μ((−∞,−x0]) <

t0
2 . Then, for all x ≥ x0

and t ∈ [t0, 1− t0],

F−1
n (t) > x =⇒ 1− Fn(x) > t =⇒ F (x)− Fn(x) >

t0
2
,

−F−1
n (t) ≥ x =⇒ Fn(−x) ≥ t =⇒ Fn(−x)− F (−x) >

t0
2
.

Hence,

P

{
sup
n≥1

F−1
n (t) > x

}
≤ P

{
sup
n≥1

(
F (x)− Fn(x)

)
>

t0
2

}
,

P

{
sup
n≥1

(
− F−1

n (t)
)
> x

}
≤ P

{
sup
n≥1

(
Fn(−x)− F (−x)

)
>

t0
2

}
.

These two bounds imply that

P
{
M(t) > x

}
≤ P

{
sup
n≥1

∣∣Fn(x)−F (x)
∣∣ > t0

2

}
+P

{
sup
n≥1

∣∣Fn(−x)−F (−x)
∣∣ > t0

2

}
.

In order to estimate the latter two probabilities, write

Fn(x)− F (x) =
Sn

n
, Sn = ξ1 + · · ·+ ξn,

where ξi = �{Xi≤x} − F (x), i ≥ 1. One can now involve a generalized form of the
Kolmogorov maximal inequality due to Hájek and Rényi,

P

{
sup
n≥1

|Sn|
n

> r
}

≤ 1

r2

∞∑
n=1

E(ξ2n)

n2
, r > 0,

which holds for all independent centered random variables ξn, n ≥ 1 (cf. [H-K,Et]).
In the present Bernoulli case, this maximal inequality yields

P
{
M(t) > x

}
≤ 2π2

3t20

[
F (x)

(
1− F (x)

)
+ F (−x)

(
1− F (−x)

)]
, x ≥ x0,

so that

E
(
M(t)p

)
= p

∫ ∞

0

xp−1 P
{
M(t) > x

}
dx ≤ c0 + c1 E

(
|X1|p

)
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with some constants independent on t. This proves the desired convergence (2.4)
of integrals over the intervals (t0, 1− t0).

Let us now turn to the missing intervals (0, t0) and (1 − t0, 1). By Fatou’s
lemma, ∫ t0

0

E
(∣∣F−1(t)

∣∣p) dt ≤ lim inf
n→∞

∫ t0

0

E
(∣∣F−1

n (t)
∣∣p) dt,

and similarly for the integrals over (1 − t0, 1). Hence, it remains to show that
uniformly over all large n the integrals∫ t0

0

E
(∣∣F−1

n (t)
∣∣p) dt, ∫ 1

1−t0

E
(∣∣F−1

n (t)
∣∣p) dt

can be made as small, as we wish, by choosing an appropriate small value of t0.
Indeed, changing the variable t = Fn(x), write∫ t0

0

∣∣F−1
n (t)

∣∣p dt =

∫
{Fn(x)≤t0}

|x|p dFn(x) =
1

n

n∑
k=1

|Xk|p �{Fn(Xk)≤t0}.

The distribution of (Xk, Fn(Xk)) is the same for all k, and therefore∫ t0

0

E
(∣∣F−1

n (t)
∣∣p)dt = E

(
|X1|p �{Fn(X1)≤t0}

)
.

By the Glivenko-Cantelli theorem, with probability one, supx∈R |Fn(x)−F (x)| → 0
as n → ∞. So, applying the Lebesgue dominated convergence theorem, we get

E
(
|X|p �{Fn(X1)≤t0}

)
→ E

(
|X|p �{F (X1)≤t0}

)
=

∫
{F (x)≤t0}

|x|p dF (x).

Given ε > 0, the last integral is smaller than ε for sufficiently small t0 > 0, and
then ∫ t0

0

E(|F−1
n (t)|p)dt < 2ε

for all n ≥ n0 with sufficiently large n0.
By a similar argument, if t0 is small enough,∫ 1

1−t0

E
(∣∣F−1

n (t)
∣∣p) dt < 2ε for all n ≥ n0.

The proof of Theorem 2.14 is therefore complete. �



CHAPTER 3

The Kantorovich distance W1(μn, μ)

This chapter is devoted to the investigation of the Kantorovich transport dis-
tance W1(μn, μ) along the sequence of empirical measures

μn =
1

n

n∑
k=1

δXk
, n ≥ 1,

of a sample (Xk)k≥1 of independent copies of a real-valued random random variable
X with law μ and distribution function F . More precisely, we study the rates of
the expected Kantorovich distance E(W1(μn, μ)), with a special emphasis for the
standard rate 1√

n
. The first paragraph describes the best and worst rates. We then

characterize the standard rate in terms of the functional

(3.1) J1(μ) =

∫ ∞

−∞

√
F (x)(1− F (x)) dx.

In fact, this will be achieved on the basis of two-sided bounds at fixed n on
E(W1(μn, μ)). The last paragraph compares these conclusions with former results
in the context of functional limit theorems.

3.1. Best and worst rates for the means E(W1(μn, μ))

According to Theorem 2.14, E(W1(μn, μ)) → 0 as n → ∞. We will be interested
here at the rate at which this convergence takes place. Before turning to this natural
question, we first emphasize that the standard rate 1√

n
is best possible (unless μ is

degenerate). As usual, X denotes a random variable with law μ.

Theorem 3.1 (Best rate for E(W1(μn, μ))). Under the first moment assump-
tion, for every n ≥ 1,

(3.2) E
(
W1(μn, μ)

)
≥ c√

n
E

(
|X −m|

)
where m is a median of X and c > 0 is an absolute constant (c = 1

2
√
2

is an

admissible value).

The proof of Theorem 3.1 is postponed to the end of the chapter. Before, let us
observe that the inequality (3.2) cannot be reversed in general. On the other hand,
a simple sufficient condition insuring the validity of the rate 1√

n
may be given in

terms of the finiteness of the integral (3.1), which, as will be discussed below, is a
stronger condition than just existence of the first moment.

19
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Theorem 3.2 (Upper-bound on E(W1(μn, μ))). For every n ≥ 1,

(3.3) E
(
W1(μn, μ)

)
≤ 1√

n
J1(μ).

This bound is elementary, since by Fubini’s theorem,

E
(
W1(μn, μ)

)
=

∫ ∞

−∞
E

(∣∣Fn(x)− F (x)
∣∣)dx

≤
∫ ∞

−∞

√
Var(Fn(x)) dx =

1√
n

J1(μ).

In fact, due to the triangle inequality in the space L2, there is a stronger bound[
E

(
W 2

1 (μn, μ)
)]1/2 ≤ 1√

n
J1(μ).

Returning to the basic L1-bound of Theorem 3.2, here are a few remarks. If
X is a random variable on a probability space (Ω,Σ,P) with distribution function
F associated to the law μ on the real line, the finiteness of the integral J1(μ) is
equivalent to the finiteness of the functional

(3.4) Λ2,1(X) =

∫ ∞

0

√
P
{
|X| > x

}
dx.

In turn, this functional is equivalent to a norm defining the Lorentz Banach space
L2,1 = L2,1(Ω,Σ,P), dual to the weak-L2 space L2,∞. In general, one has the
inclusions L2+δ ⊂ L2,1 ⊂ L2, where Lp = Lp(Ω,Σ,P) denote the usual Lebesgue
spaces with norms ‖X‖p = (E(|X|p))1/p. The preceding inclusions are strict. For
example, the random variable X with law μ and distribution function

F (x) = 1− 1

(1 + x)2 log2(e+ x)
, x ≥ 0,

has a finite second moment, but J1(μ) = ∞ (equivalently Λ2,1(X) = ∞). On the
other hand, the condition E(|X|2+δ) < ∞ with δ > 0 is sufficient for the finiteness
of J1(μ).

When J1(μ) is infinite, the means E(W1(μn, μ)) may decay at an arbitrary
slow rate (of course at least 1√

n
by Theorem 3.1). The following statement will be

obtained as a consequence of the more general Theorem 3.5 as will be developed in
the next section.

Theorem 3.3 (Worst rate for E(W1(μn, μ))). For any sequence of numbers
εn → 0, there exists μ ∈ Z1(R) such that

E
(
W1(μn, μ)

)
≥ εn

for all n large enough.

We conclude this section with the proof of Theorem 3.1. It is based on the
following classical lemma.
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Lemma 3.4. Given independent mean zero random variables ξ1, . . . , ξn,

E

(∣∣∣∣ n∑
k=1

ξk

∣∣∣∣) ≥ cE

(( n∑
k=1

ξ2k

)1/2)
where c > 0 is an absolute constant. (One may take c = 1

2
√
2
.)

The lower-bound of Lemma 3.4 is standard and represents a particular case of
a more general two-sided inequality due to Marcinkiewicz and Zygmund for p-th
moments of sums of independent mean zero random variables, cf. [M-Z]. To obtain
an explicit value of the constant c in the particular case p = 1, one may use a
symmetrization argument. Let ε1, . . . , εn be independent random variables with a
symmetric Bernoulli distribution, that is, P{εk = ±1} = 1

2 , k = 1, . . . , n. Let all εk
be also independent of all ξj . If (ξ

′
1, . . . , ξ

′
n) is an independent copy of (ξ1, . . . , ξn),

which is independent of the εk’s, by the triangle inequality and symmetry,

E

(∣∣∣∣ n∑
k=1

ξk

∣∣∣∣) ≥ 1

2
E

(∣∣∣∣ n∑
k=1

(ξk − ξ′k)

∣∣∣∣)

=
1

2
E

(∣∣∣∣ n∑
k=1

εk(ξk − ξ′k)

∣∣∣∣) ≥ 1

2
E

(∣∣∣∣ n∑
k=1

εkξk

∣∣∣∣)
where the last step follows from Jensen’s inequality in the centered ξ′k variables. On
the other hand, by Khinchine’s inequality with optimal constant (due to Haagerup
[Ha]), for all scalars a1, . . . , an,

E

(∣∣∣∣ n∑
k=1

εkak

∣∣∣∣) ≥ 1√
2

( n∑
k=1

a2k

)1/2

.

Combining the two inequalities yields Lemma 3.4 with c = 1
2
√
2
.

On the basis of Lemma 3.4, we address the proof of Theorem 3.1.

Proof of Theorem 3.1. From Theorem 2.9, for every n ≥ 1,

E
(
W1(μn, μ)

)
=

∫ ∞

−∞
E

(∣∣Fn(x)− F (x)
∣∣)dx.

By Lemma 3.4 applied to ξk = �{Xk≤x} − F (x), k = 1, . . . , n, we have

E
(∣∣Fn(x)− F (x)

∣∣) ≥ c

n
E

(( n∑
k=1

ξ2k

)1/2)
.

But

E

(( n∑
k=1

ξ2k

)1/2)
≥

( n∑
k=1

(
E

(
|ξk|

))2)1/2

= 2
√
nF (x)

(
(1− F (x)

)
,

so that

E
(∣∣Fn(x)− F (x)

∣∣) ≥ 1√
2n

F (x)
(
(1− F (x)

)
.

After integration over all x ∈ R, we arrive at

E
(
W1(μn, μ)

)
≥ 1√

2n

∫ ∞

−∞
F (x)

(
1− F (x)

)
dx.
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To further estimate the last integral, it remains to recall the general identity∫ ∞

−∞
F (x)

(
1− F (x)

)
dx =

1

2
E

(
|X1 −X ′

1|
)

where X ′
1 is an independent copy of X1. Note also that the expectation E(|X1−a|)

is minimized for (any) median a = m(X1) of a given random variable X1 with
distribution function F . Theorem 3.1 follows. �

3.2. Two-sided bounds on E(W1(μn, μ))

Now, we turn to the more delicate question on how to bound explicitly, both
from above and below, the mean distance E(W1(μn, μ)) in terms of the distribution
function F of μ for each fixed n ≥ 1. The next statement refines both Theorem 3.1
and Theorem 3.2, and may be used to obtain a variety of possible rates.

Theorem 3.5 (Two-sided bounds on E(W1(μn, μ))). There is an absolute con-
stant c > 0 such that for any μ ∈ Z1(R), for every n ≥ 1,

c (An +Bn) ≤ E
(
W1(μn, μ)

)
≤ An +Bn

where

An = 2

∫
{4nF (x)(1−F (x))≤1}

F (x)
(
1− F (x)

)
dx,

Bn =
1√
n

∫
{4nF (x)(1−F (x))>1}

√
F (x)(1− F (x)) dx.

One may take c = 1
2 5

−4.

Since
√
nBn → J1(μ) as n → ∞, together with Theorem 3.2, the preceding

result yields the following characterization.

Corollary 3.6 (Characterization of the standard rate for E(W1(μn, μ))).
Given μ ∈ Z1(R), E(W1(μn, μ)) = O( 1√

n
) as n → ∞ if and only if the integral

J1(μ) =

∫ ∞

−∞

√
F (x)(1− F (x)) dx

is finite.

Before turning to the proof of Theorem 3.5, let us look at the possible behav-
ior of E(W1(μn, μ)) for some classes of underlying distributions μ with finite first
absolute moment and such that the integral J1(μ) is infinite. Consider for instance
the modified Pareto distributions μ on the real line that are symmetric about the
origin and have distribution functions F such that

4F (x)
(
1− F (x)

)
= x−β , x ≥ 1,

with parameter 1 < β < 2. In this case,

An = 2

∫
{4nF (x)(1−F (x))≤1}

F (x)
(
1− F (x)

)
dx = cβ n

−1/β∗
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where β∗ = β
β−1 is the conjugate exponent. In addition,

Bn =
1√
n

∫
{4nF (x)(1−F (x))>1}

√
F (x)(1− F (x)) dx = c′β n

−1/β∗ − c′′β n
−1/2.

Since β∗ > 2, it follows that

An +Bn ∼ cβ n
−1/β∗

with some constant cβ depending on β. Therefore, by Theorem 3.5, E(W1(μn, μ))
can be of order n−α with any prescribed value of α such that 0 < α < 1

2 . A similar
conclusion can also be made about standard Pareto distributions.

We next address the proof of Theorem 3.3 of the last section on the same
basis. Indeed, given a rate εn → 0, it is sufficient, by Theorem 3.5, to construct a
distribution function F with finite first absolute moment such that

1

2
An =

∫
{4nF (x)(1−F (x))≤1}

F (x)
(
1− F (x)

)
dx ≥ εn

for all n large enough. Restricting ourselves to the case where F is continuous,
(strictly) increasing and symmetric about the origin, one may formulate this task
in terms of the function u(x) = 4F (x)(1 − F (x)) considered on [0,∞). Indeed, u
may be an arbitrary continuous, (strictly) decreasing, integrable function in x ≥ 0,
such that u(0) = 1, and we need to have the additional property that∫

{u(x)≤1/n}
u(x) dx ≥ εn

for all n large enough. But this is a rather obvious statement justifying therefore
Theorem 3.3.

The proof of Theorem 3.5 requires some preparation. First, we need to refine
the bound of Lemma 3.4 in the case of Bernoulli random variables. The next
statement is a preliminary step.

Lemma 3.7. Given independent random variables ξ1, . . . , ξn such that |ξk| ≤ 1
a.s., k = 1, . . . , n, we have

Var
(
‖ξ‖

)
≤ 1

where ‖ξ‖=
( ∑n

k=1 ξ
2
k

)1/2
denotes the Euclidean norm of the vector ξ=(ξ1, . . . , ξn).

Proof. For any random variable R ≥ 0 with finite 4-th moment and such that
E(R2) > 0, there is a general upper-bound for its variance,

(3.5) Var(R) ≤ Var(R2)

E(R2)
.

Indeed, putting a =
√
E(R2),

Var(R2) = E
(
(R2 − a2)2

)
= E

(
(R− a)2(R+ a)2

)
≥ a2 E

(
(R− a)2

)
≥ a2 Var(R)

which is exactly the desired bound.
Now, take R = ‖ξ‖. Then, by the independence of the ξk’s, and using that

|ξk| ≤ 1,

Var(R2) =

n∑
k=1

Var(ξ2k) ≤
n∑

k=1

E(ξ4k) ≤
n∑

k=1

E(ξ2k) = E(R2).

Hence Var(R) ≤ 1 by (3.5), and the lemma follows. �
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Observe that the bound of Lemma 3.7 represents a special case of the concen-
tration of measure phenomenon for product measures on the cube [−1, 1]n, stated
for the specific convex Lipschitz function u(x) = ‖x‖. See [T2,L1,L3,Bob1].

The next crucial lemma for sums of independent Bernoulli random variables is
perhaps classical, but we could not find an appropriate specific reference.

Lemma 3.8. Let Sn = η1 + · · · + ηn be the sum of n independent Bernoulli
random variables ηk, k = 1, . . . , n, with P{ηk = 1} = p and P{ηk = 0} = q = 1− p
where p ∈ (0, 1). Then

c min{2npq,√npq } ≤ E
(
|Sn − np|

)
≤ min{2npq,√npq },

where c > 0 is an absolute constant. One may take c = 1
2 5−4.

Proof. The upper-bound is elementary. On the one hand,

E
(
|Sn − np|

)
≤

√
Var(Sn) =

√
npq.

On the other hand, by the triangle inequality,

E
(
|Sn − np|

)
≤

n∑
k=1

E
(
|ηk − p|

)
= 2npq.

The two estimates imply the upper-bound of the lemma.
To derive a lower-bound, we apply Lemma 3.7 to the random vector

ξ = (ξ1, . . . , ξn) in Rn where ξk = ηk − p, for k = 1, . . . , n. It gives[
E

(
‖ξ‖

)]2 ≥ E
(
‖ξ‖2

)
− 1 = npq − 1 ≥ 1

2
npq,

where the last inequality holds whenever npq ≥ 2. In this case, we get therefore
E(‖ξ‖) ≥ 1√

2

√
npq, and by Lemma 3.4,

E
(
|Sn − np|

)
= E

(∣∣∣∣ n∑
k=1

ξk

∣∣∣∣) ≥ 1

4

√
npq.

It yields the lower bound of the lemma (with the better constant c = 1
4 ).

Now, assume that npq ≤ 2 and, without loss of generality, that p ≥ 1
2 . Hence,

q ≤ 4
n , and moreover,

q ≤ qn = min
{1

2
,
4

n

}
.

We have

E
(
|Sn − np|

)
≥ E

(
|Sn − np|�{η1=···=ηn=1}

)
= nq P{η1 = · · · = ηn = 1}
= pn−1 npq.

(3.6)

If n ≤ 4, just use pn−1 ≥ 1
8 . For the remaining values n ≥ 5, we have

(3.7) pn−1 ≥ (1− qn)
n−1 ≥

(
1− 4

n

)n−1

≥ 5−4.
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(Here, the last inequality may be explained by the fact that the function (1− 4
x )

x−1

is increasing in x ≥ 5.) Combining the two lower estimates (3.6) and (3.7), we
finally get

E
(
|Sn − np|

)
≥ c · 2npq ≥ c min{2npq,√npq}

with constant c = 1
2 5−4. �

Proof of Theorem 3.5. Start again from Theorem 2.9 to get

E
(
W1(μn, μ)

)
=

∫ ∞

−∞
E

(∣∣Fn(x)− F (x)
∣∣) dx.

By Lemma 3.8 applied to ηk = �{Xk≤x}, k = 1, . . . , n, and p = F (x), q = 1−F (x),
we obtain

E
(∣∣Fn(x)− F (x)

∣∣) ≤ 1

n
min

{
2nF (x)

(
1− F (x)

)
,
√
nF (x)(1− F (x))

}
.

Hence,

E
(
W1(μn, μ)

)
≤ 2

∫
{4nF (x)(1−F (x))≤1}

F (x)
(
1− F (x)

)
dx

+
1√
n

∫
{4nF (x)(1−F (x))>1}

√
F (x)(1− F (x)) dx = An +Bn.

The lower-bound of the same lemma yields the reverse bound E(W1(μn, μ)) ≥
c(An +Bn) with constant c = 1

2 5
−4. The proof is complete. �

3.3. Functional limit theorems

The condition J1(μ) < ∞ as in Corollary 3.6 appears naturally in functional
central limit theorems. Namely, suppose that Y is a random element in the Banach
space L1(R), and let (Yk)k≥1 be independent copies of Y . By the assumption, the
integral

‖Y ‖L1(R) =

∫ ∞

−∞
|Y (x)| dx

is almost surely finite. As a stronger condition, one may assume the finiteness of
the first L1-norm moment

E
(
‖Y ‖L1(R)

)
=

∫ ∞

−∞
E

(
|Y (x)|

)
dx.

Define Zn = 1√
n
(Y1+ · · ·+Yn), n ≥ 1. Assuming in addition that E(Y (x)) = 0,

for all x ∈ R, by a theorem due to Giné and Zinn [G-Z], the sequence (Zn)n≥1 is

convergent weakly in distribution in L1(R) to a Gaussian limit γ if and only if

(3.8)

∫ ∞

−∞

[
E

(
|Y (x)|2

)]1/2
dx < ∞.

In particular, this theorem can be applied to the random function

Y (x) = �X(x)− F (x), x ∈ R,

which belongs to L1(R) as long as E(|X|) < ∞. For this choice of Y , the condition
(3.8) exactly amounts to the finiteness of J1(μ). Therefore

Zn =
√
n

(
Fn(x)− F (x)

)
→ γ weakly in L1(R)
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if and only if J1(μ) < ∞.
To describe the Gaussian limit γ, recall the classical fact (known as Donsker’s

theorem) that when F is a uniform distribution on the unit interval [0, 1],
√
n

(
Fn(t)− t

)
→ W o(t).

weakly in the Skorokhod space D([0, 1]). That is, γ is the distribution of the
standard Brownian bridge W o(t) = W (t)− tW (1), 0 ≤ t ≤ 1. Recall that D([0, 1])
is equipped with a metric generating the topology such that all balls with respect
to the uniform metric are Borel measurable, cf. [Bi,S-W,C-H].

Using the change of the variable t = F (x), this result extends to
√
n

(
Fn(x)− F (x)

)
→ W o

(
F (x)

)
where the weak convergence is understood in the space D0(−∞,∞) of all functions
u = u(x) such that the limits u(x−) and u(x+) exist and are finite for all points x
of the real line, and in addition u(x) → 0 as |x| → ∞.

Note that no moment assumption is needed for such weak convergence. But
the Gaussian process G(x) = W o(F (x)), x ∈ R, has trajectories in L1(R), that is,

‖G‖L1(R) =

∫ ∞

−∞

∣∣W o(F (x))
∣∣dx < ∞ a.s.

if and only if

E
(
‖G‖L1(R)

)
=

∫ ∞

−∞
E

(∣∣W o(F (x))
∣∣) dx =

√
2

π
J1(μ) < ∞.

The following statement summarizes the previous conclusions and complements
Corollary 3.6.

Corollary 3.9 (Functional limit theorem for W1(μn, μ)). For any μ ∈ Z1(R)
with distribution function F , the following properties are equivalent:

a)
√
n E(W1(μn, μ)) = O(1) as n → ∞;

b)
√
n (Fn(x)− F (x)) → W o(F (x)) weakly in L1(R);

c) J1(μ) < ∞.

Under one of these equivalent conditions,

√
n W1(μn, μ) →

∫ ∞

−∞

∣∣W o(F (x))
∣∣dx

weakly in distribution on R.

The equivalence of b) and c) was first emphasized in the work of del Barrio,
Giné and Matrán [B-G-M], cf. Theorem 2.1 therein. It is also stated there that,
under the condition c), the sequence

√
n W1(μn, μ) is stochastically bounded, i.e.

lim
t→∞

sup
n≥1

P
{√

n W1(μn, μ) > t
}

= 0.

Moreover, it is shown in [B-G-M] (Theorem 2.4) that, if J1(μ) < ∞, and if
additionally μ has a finite absolute moment of order p ≥ 2, then there is a finite
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limit of moments

lim
n→∞

E

((√
n W1(μn, μ)

)r)
= E

(( ∫ ∞

−∞

∣∣W o(F (x))
∣∣dx)r

)
for any 0 < r ≤ p.

In case J1(μ) = ∞ with μ being a stable law, an asymptotic behavior of distri-
butions of W1(μn, μ) was also studied in [B-G-M]. In particular, Proposition 4.3
and Corollary 4.4 therein indicate that, if μ is in the domain of normal attraction
with a normalizing sequence bn and with J1(μ) = ∞, then

lim
n→∞

W1(μn, μ)

bn
= lim

n→∞

W1(μn, μ)

E(W1(μn, μ))
= 1 in probability.

This may be viewed as a variant of the law of large numbers.





CHAPTER 4

Order statistics representations of Wp(μn, μ)

With this chapter, we start the investigation of the rate as n → ∞ of
E

(
Wp(μn, μ)

)
for some p > 1. As will be clear in the next chapters, it actually

turns out that the behaviour of E
(
Wp(μn, μ)

)
for p > 1 can be very different than

in the case p = 1 (for which the preceding chapter provided the universal rate 1√
n

under mild conditions on μ). The investigation of the case p > 1 thus requires dif-
ferent tools and methods. This chapter introduces new tools in this investigation,
namely the use of order statistics and related beta distributions after reduction to
the uniform distribution, which are more suited to the case p > 1. Exact rates for
the uniform distribution are provided.

As in the previous chapter, we deal with a Borel probability measure μ on R

with distribution function F , law of a random variable X, and with the sequence
μn = 1

n

∑n
k=1 δXk

, n ≥ 1, of empirical measures of a sample (Xk)k≥1 of independent
copies of X.

4.1. Optimal transport, order statistics and inverse functions

We first develop a description of the Kantorovich distances in terms of order
statistics. First, let us recall a few basic facts from the field of transportation of
measure. We refer to [R-R,Vi1,Vi2] for more complete accounts.

Any collection of real numbers x1, . . . , xn may be arranged in increasing order
x∗
1 ≤ · · · ≤ x∗

n. In particular,

x∗
1 = min

1≤k≤n
xk and x∗

n = max
1≤k≤n

xk.

A similar notation is applied to random variables X1, . . . , Xn, in which case X∗
k is

called the k-th order statistic.
The following lemma is classical.

Lemma 4.1. Let V : R → R be even and convex. For any two collections of
real numbers x1, . . . , xn and y1, . . . , yn,

inf
σ

n∑
k=1

V (xk − yσ(k)) =

n∑
k=1

V (x∗
k − y∗k)

where the infimum is taken over all permutations σ of {1, . . . , n}.

Proof. Without loss of generality, one may assume that x1 ≤ · · · ≤ xn, n ≥ 2.
We use the property that, for any h ≥ 0, the function

Δh(x) = V (x+ h)− V (x)

29
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is non-decreasing. Fix 1 ≤ i < j ≤ n and a permutation σ. Put u = yσ(i), v = yσ(j).

In case u > v, let us see that the sum S(σ) =
∑n

k=1 V (xk − yσ(k)) can be made
smaller (more precisely – not larger) after interchanging u and v. This corresponds
to the new permutation σ′ = Tij(σ) such that

σ′(i) = σ(j), σ′(j) = σ(i), σ′(k) = σ(k) for k 
= i, j.

That is, we need to see that

V (xi − v) + V (xj − u) ≤ V (xi − u) + V (xj − v),

or equivalently,

Δu−v(xi) ≤ Δu−v(xj).

But this is true by the above mentioned monotonicity property. Thus,
S(Tij(σ)) ≤ S(σ). It should also be clear that the composition of finitely many
Tij will bring us to the permutation σ′ with S(σ′) ≤ S(σ), such that yσ′(i) ≤ yσ′(j)

whenever i < j. �

With every collection of real numbers x1, . . . , xn, we associate an “empirical”
measure

μ =
1

n

n∑
k=1

δxk
.

The next lemma specializes the representation of Wp in terms of the inverse distri-
bution functions (Theorem 2.10) to the class of such measures. For completeness,
we include a proof on the basis of Lemma 4.1.

Lemma 4.2. Given two collections of real numbers x1, . . . , xn and y1, . . . , yn,
let μ and ν be the corresponding empirical measures. Then, for any p ≥ 1,

W p
p (μ, ν) =

1

n

n∑
k=1

|x∗
k − y∗k|p.

In particular,

W∞(μ, ν) = max
1≤k≤n

|x∗
k − y∗k|.

Proof. By the very definition of the Kantorovich distance Wp(μ, ν) between
μ and ν,

W p
p (μ, ν) = inf

π

∫
R

∫
R

|x− y|p dπ(x, y) = inf
π

n∑
i=1

n∑
j=1

|xi − yj |p πij

where the infimum is taken over all probability measures π on the plane R×R with
marginals μ and ν, and where we put πij = π{(xi, yj)} (necessarily, π is supported
on the points (xi, yj), 1 ≤ i, j ≤ n). Thus, the second infimum is taken over the
set Mn of all n × n matrices (πij) with non-negative entries such that, for any
i = 1, . . . , n and any j = 1, . . . , n,

n∑
j=1

πij =
n∑

i=1

πij =
1

n
.
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Note that Mn represents a convex compact subset of Rn2

, and the functional

π →
n∑

i=1

n∑
j=1

|xi − yj |p πij

is affine on it. Therefore, this functional attains minimum at one of the extreme
points ofMn. But, by the well-known Birkhoff theorem, any such point has the form
πij = 1

n 1{j=σ(i)}, where σ : {1, . . . , n} → {1, . . . , n} is an arbitrary permutation.
Hence,

W p
p (μ, ν) =

1

n
inf
σ

n∑
i=1

|xi − yσ(i)|p

where the infimum is taken over all permutations σ : {1, . . . , n} → {1, . . . , n}.
Finally, to specify the last infimum, it remains to apply Lemma 4.1 with the convex
function V (x) = |x|p. �

Let us now apply Lemma 4.2 to arbitrary collections of random variables. We
denote by L(ξ) the distribution (the law) of a (real) random variable ξ.

Theorem 4.3 (Order statistics representation of Wp(μn, μ)). Given random
vectors (X1, . . . , Xn) and (Y1, . . . , Yn) in Rn, let μn and νn be the corresponding
empirical measures. Then, for any p ≥ 1,

(4.1) E
(
W p

p (μn, νn)
)
=

1

n

n∑
k=1

E
(
|X∗

k − Y ∗
k |p

)
.

Moreover, if (Y1, . . . , Yn) is an independent copy of (X1, . . . , Xn) and μ = E(μn) =
1
n

∑n
k=1 L(Xk) is the mean marginal distribution,

(4.2)
2−p

n

n∑
k=1

E
(∣∣X∗

k −E(X∗
k)

∣∣p) ≤ E
(
W p

p (μn, μ)
)
≤ 2p

n

n∑
k=1

E
(∣∣X∗

k −E(X∗
k)

∣∣p).
In the case p = 2 similar bounds hold with better constants:

1

2n

n∑
k=1

Var(X∗
k) ≤ E

(
W 2

2 (μn, μ)
)
≤ 2

n

n∑
k=1

Var(X∗
k).

Proof. The first relation (4.1) immediately follows from Lemma 4.2. To derive
the lower-bound for E(W p

p (μn, μ)) in (4.2), one may use the triangle inequality for
the distance Wp to get that

W p
p (μn, νn) ≤ 2p−1

(
W p

p (μn, μ) +W p
p (νn, μ)

)
.

After taking the expectations,

E
(
W p

p (μn, νn)
)
≤ 2p−1

(
E

(
W p

p (μn, μ)
)
+ E

(
W p

p (νn, μ)
))

= 2p E
(
W p

p (μn, μ)
)

so that

E
(
W p

p (μn, μ)
)
≥ 2−p

n

n∑
k=1

E
(
|X∗

k − Y ∗
k |p

)
.

Also, by Jensen’s inequality and independence,

E
(
|X∗

k − Y ∗
k |p

)
≥ E

(∣∣X∗
k − E(Y ∗

k )
∣∣p) = E

(∣∣X∗
k − E(X∗

k)
∣∣p)
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so the lower-bound in (4.2) follows. Note that E(|X∗
k − Y ∗

k |2) = 2 Var(X∗
k), which

leads to the improvement in the constant when p = 2.
To derive the upper-bound in (4.2), we use the convexity of the functional

ν �→ W p
p (μ, ν). This property may actually be verified in the setting of an arbi-

trary metric space (E, d). Fix t1, t2 ≥ 0, t1 + t2 = 1. Given μ, ν1, ν2 ∈ Zp(E, d),
let probability measures π1 and π2 on E × E have marginals (μ, ν1) and (μ, ν2),
respectively. Then π = t1π1 + t2π2 has marginals (μ, ν) where ν = t1ν1 + t2ν2.
Hence,

W p
p (μ, ν) ≤

∫
E

∫
E

|x− y|p dπ(x, y)

= t1

∫
E

∫
E

|x− y|p dπ1(x, y) + t2

∫
E

∫
E

|x− y|p dπ2(x, y).

Taking the infimum on the right-hand side over all admissible measures π1 and π2,
we arrive at

W p
p (μ, ν) ≤ t1W

p
p (μ, ν1) + t2W

p
p (μ, ν2)

which means exactly the convexity.
Since the functional ν → W p

p (μ, ν) is also continuous on Zp(E, d), the above
Jensen inequality extends to infinite sums or integrals, at least, when (E, d) is
separable. In particular, in the space Zp(R)

W p
p (μn, μ) = W p

p

(
μn,EY (νn)

)
≤ EY

(
W p

p (μn, νn)
)
.

After the next integration with respect to X this yields

E
(
W p

p (μn, μ)
)
≤ 1

n

n∑
k=1

E
(
|X∗

k − Y ∗
k |p

)
from which (4.2) immediately follows. If p = 2, the latter expectation is equal to
2 Var(X∗

k). Theorem 4.3 is proved. �

To conclude this section, we briefly investigate another possible approach to the
study of the Kantorovich distances between probability distributions on the real line
by means of inverse (distribution) functions. With every distribution function F ,
recall the associated inverse distribution function

F−1(t) = inf
{
x ∈ R : F (x) ≥ t

}
, 0 < t < 1

from (2.2). (We refer to Appendix A for a complete analytic investigation of inverse
distribution functions.) The alternative description of Kantorovich distances is
based on the general explicit representation

W p
p (μ, ν) =

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣p dt,

from Theorem 2.10. Applying it to the empirical measures, one obtains the following
alternative variant of Theorem 4.3 for E(W p

p (μn, μ)) in terms of the quantile process

t → F−1
n (t).

Theorem 4.4 (Quantile representation of W p
p (μn, μ)). Let (X1, . . . , Xn) be a

vector of random variables with finite p-th absolute moments (p ≥ 1). Let μn be the
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corresponding empirical measure, and μ = 1
n

∑n
k=1 L(Xk) be the mean marginal

distribution. Then

E
(
W p

p (μn, μ)
)
=

∫ 1

0

E
(∣∣F−1

n (t)− F−1(t)
∣∣p) dt

where Fn and F are distribution functions associated with μn and μ respectively.

The representation of Theorem 4.4 leads to a different expression for
E(W p

p (μn, μ)) in comparison with the bounds of Theorem 4.3. For definiteness,

assume that X∗
1 < · · · < X∗

n a.s., so that μn assigns the mass 1
n to n distinct

points (this assumption can be removed in the resulting representations). Then
Fn(X

∗
k) =

k
n and

F−1
n (t) = X∗

k for
k − 1

n
< t ≤ k

n
, k = 1, . . . , n.

Hence, by Theorem 4.4,

EW p
p (μn, μ) =

n∑
k=1

∫ k/n

(k−1)/n

E
(∣∣X∗

k − F−1(t)
∣∣p)dt.

Under further regularity assumptions on F , one may change the variable t = F (x),
and then the above formula becomes

E
(
W p

p (μn, μ)
)
=

n∑
k=1

∫ F−1(k/n)

F−1((k−1)/n)

E
(
|X∗

k − x|p
)
dF (x).

Both formulas can be used for computations in special cases. For example, for the
basic exponent p = 2,

E
(∣∣X∗

k − F−1(t)
∣∣2) = Var(X∗

k) +
∣∣E(X∗

k)− F−1(t)
∣∣2.

The following statement results.

Corollary 4.5. In the setting of Theorem 4.4 with p = 2,

E
(
W 2

2 (μn, μ)
)
=

1

n

n∑
k=1

Var(X∗
k) +

n∑
k=1

∫ k/n

(k−1)/n

∣∣E(X∗
k)− F−1(t)

∣∣2 dt.
4.2. Reduction to the uniform distribution

In the study of rates for the mean Kantorovich distances in the scheme of inde-
pendent identically distributed random variables, the uniform distribution appears
as the best possible example (in some sense). On the other hand, many questions
about E(W p

p (μn, μ)) in the general case can be reduced to this example.
When a sample (U1, . . . , Un) consists of independent random variables uni-

formly distributed in the unit interval (0, 1), the order statistics U∗
1 ≤ · · · ≤ U∗

n are
well-studied in this case. Indeed, the k-th order statistic U∗

k , k = 1, . . . , n, has a
beta distribution Bk,n−k+1 with parameters (k, n− k + 1), i.e. it has the density

pk,n(x) = nCk−1
n−1 x

k−1(1− x)n−k, 0 < x < 1,

where Ck−1
n−1 = (n−1)!

(k−1)!(n−k)! are the usual binomial coefficients. We refer to Appen-

dix B for a complete analysis of beta distributions and their densities.
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Therefore, when the random variables X1, . . . , Xn are independent and dis-
tributed according to μ with distribution function F and associated inverse function
F−1 (cf. (2.2)), the corresponding order statistics may be represented as

X∗
k = F−1(U∗

k ), k = 1, . . . , n

(cf. Proposition A.1). As a result, there is yet another alternative to the represen-
tation of E

(
W p

p (μn, νn)
)
given in Theorem 4.3. As usual, μn = 1

n

∑n
k=1 δXk

.

Theorem 4.6 (Beta representation of Wp(μn, μ)). If νn is an independent copy
of μn, for all p ≥ 1,

E
(
W p

p (μn, νn)
)

=
1

n

n∑
k=1

∫ 1

0

∫ 1

0

∣∣F−1(t)− F−1(s)
∣∣p dBk,n−k+1(t) dBk,n−k+1(s).

(4.3)

Recall that

E
(
W p

p (μn, μ)
)
≤ E

(
W p

p (μn, νn)
)
≤ 2p E

(
W p

p (μn, μ)
)

so that the right-hand side of (4.3) with F the distribution function of μ de-
scribes in essence the behaviour of E(W p

p (μn, μ)). This approach will be used in
Chapter 5 below.

At this point, let us illustrate how Theorem 4.3 may be used to derive an exact
formula for the mean of the quadratic Kantorovich distances in the case of the
uniform distribution.

We first recall from Appendix B the moment formulas for the beta distributions.
For the sample (U1, . . . , Un) drawn from the uniform distribution and the associated
order statistics U∗

1 ≤ · · · ≤ U∗
n, we have α = k and β = n− k + 1 so that

E(U∗
k ) =

k

n+ 1
and Var(U∗

k ) =
k(n− k + 1)

(n+ 1)2 (n+ 2)
.

It then easily follows that

1

n

n∑
k=1

Var(U∗
k ) =

1

6(n+ 1)
.

Using Theorem 4.3, we obtain an exact formula for E(W 2
2 (μn, νn)), where νn is an

independent copy of μn. It also provides the two-sided bound

1

12 (n+ 1)
≤ E

(
W 2

2 (μn, μ)
)
≤ 1

3(n+ 1)
.

For an exact formula, one may appeal to Corollary 4.5 which gives

E
(
W 2

2 (μn, μ)
)
=

1

n

n∑
k=1

Var(U∗
k ) +

n∑
k=1

∫ k/n

(k−1)/n

(
E(U∗

k )− t
)2

dt

=
1

6(n+ 1)
+

n∑
k=1

∫ k/n

(k−1)/n

(
t− k

n+ 1

)2

dt

=
1

6(n+ 1)
+

1

3 (n(n+ 1))3

n∑
k=1

[
k3 + (n− k + 1)3

]
.

Using that
∑n

k=1 k
3 =

(n(n+1)
2

)2
, we arrive at the following conclusion.
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Theorem 4.7 (Exact rate of E(W 2
2 (μn, μ)) for the uniform distribution). If μ

is the uniform distribution on (0, 1), for each n ≥ 1,

E
(
W 2

2 (μn, μ)
)
=

1

6n
.

In addition, if νn is an independent copy of μn,

E
(
W 2

2 (μn, νn)
)
=

1

3(n+ 1)
.

Similar asymptotic behaviours are valid for E(W p
p (μn, μ)) with arbitrary p ≥ 1.

Theorem 3.1 produces the lower-bound

(4.4) E
(
Wp(μn, μ)

)
≥ E

(
W1(μn, μ)

)
≥ c√

n
E

(
|X −m|

)
where m is a median of X (with law μ) and c = 1

2
√
2
. To improve the factor

E(|X−m|), recall that on the final step of derivation, we obtained a slightly better
general bound

E
(
W1(μn, μ)

)
≥ 1√

2n

∫ ∞

−∞
F (x)

(
1− F (x)

)
dx,

which in case of the uniform distribution μ on (0, 1) becomes E(W1(μn, μ)) ≥ 1
6
√
2n

.

For an upper-bound, one option is to apply a Khinchine-type inequality holding
for random variables with log-concave probability distributions (and using the fact
that the beta distributions are log-concave for α ≥ 1 and β ≥ 1). To get a sharper
estimate, one can also use the property that the U∗

k ’s are uniformly sub-Gaussian.
Indeed, as will be shown in Appendix B (cf. Proposition B.10), for all k = 1, . . . , n,

P
{∣∣U∗

k − E(U∗
k )

∣∣ ≥ r
}

≤ 2 e−(n+1)r2/8, r ≥ 0.

This readily provides bounds on the moments, for example

E
(∣∣U∗

k − E(U∗
k )

∣∣p) ≤
(Cp

n

)p/2

with some absolute constant C > 0. The following statement is then immediately
obtained from Theorem 4.3.

Theorem 4.8 (Exact rate of E(W p
p (μn, μ)) for the uniform distribution). Let

μ be the uniform distribution on (0, 1). Then, for any p ≥ 1, and any n ≥ 1, with
some absolute constant C > 0,[

E
(
W p

p (μn, μ)
)]1/p ≤ C

√
p

n
.

Note that from (4.4) and Theorem 4.8, E(Wp(μn, μ)) is of order 1√
n

for any

p ≥ 1.

However, the behaviour of E(Wp(μn, μ)) and
[
E(W p

p (μn, μ))
]1/p

is different for
growing p. Indeed, in the case of the uniform distribution μ on (0, 1), F (x) = x
for all x ∈ [0, 1]. Let as usual Fn denote the distribution function associated to μn,
which is thus constant outside [0, 1] (with probability one). Then, by Theorem 2.8
applied to μ, the distance W∞(μn, μ) may be described as the infimum over all
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h ≥ 0 such that x− h ≤ Fn(x) ≤ x+ h, for all x ∈ [0, 1]. That is, with probability
one we have

W∞(μn, μ) = ‖Fn − F‖ = sup
x∈R

∣∣Fn(x)− F (x)
∣∣,

which represents the (uniform) Kolmogorov distance between Fn and F . In that
case, by the Dvoretzky-Kiefer-Wolfowitz theorem [D-K-W], the random variables√
n ‖Fn − F‖ are uniformly sub-Gaussian, and more precisely,

P
{√

n ‖Fn − F‖ ≥ t
}

≤ 2 e−2r2 , r > 0,

cf. [Mas]. As a direct consequence, we obtain:

Theorem 4.9 (Exact rate of E(W∞(μn, μ)) for the uniform distribution). Let
μ be the uniform distribution on (0, 1). Then, with some absolute constant C > 0
(for example C =

√
π
2 ), for any n ≥ 1,

E
(
W∞(μn, μ)

)
≤ C√

n
.

On the other hand, the bound of Theorem 4.8 cannot be true with a
p-independent constant, and the stated dependence in p is correct. Indeed,

E
(
W p

p (μn, μ)
)
= E

( ∫ 1

0

∣∣F−1
n (t)− t

∣∣p dt) = E

(∫ 1

0

∣∣Fn(x)− x
∣∣p dx)

.

By the central limit theorem, the random variables
√
n (Fn(x)− F (x)) are weakly

convergent to the normal law N(0, x(1− x)). By convergence of moments, we get
that

lim
n→∞

√
n

[
E

(
W p

p (μn, μ)
)]1/p

=

[
E

(
|Z|p

) ∫ 1

0

(
x(1− x)

)p/2
dx

]1/p

where Z ∼ N(0, 1). Here [E(|Z|p)]1/p is of order
√
p.

It is also of interest to compare Theorem 4.9 with the asymptotics (without
any normalization)

lim
p→∞

[
E

(
W p

p (μn, νn)
)]1/p

= 1,

where νn is an independent copy of μn, which can be made on the basis of The-
orem 4.6. Indeed, since both μn and νn are supported on [0, 1] (with probability
one), we have Wp(μn, νn) ≤ 1. On the other hand, from (4.3), for any k = 1, . . . , n,[
E

(
W p

p (μn, νn)
)]1/p ≥

[
1

n

∫ 1

0

∫ 1

0

∣∣t− s
∣∣p dBk,n−k+1(t) dBk,n−k+1(s)

]1/p

→ 1

as p → ∞.



CHAPTER 5

Standard rate for E(W p
p (μn, μ))

In this main chapter, we study the rates for the mean transport distances
E(Wp(μn, μ)) or E(W

p
p (μn, μ))

1/p, with a special focus on bounds that provide the

standard 1√
n
-rate. Here, as usual, μ is a Borel probability measure on R with

distribution function F , and μn = 1
n

∑n
k=1 δXk

, n ≥ 1, are the empirical measures
on a sample (Xk)k≥1 of independent random variables with common law μ.

Unlike the case p = 1, it actually turns out that, even if μ is compactly
supported, an extra condition on μ is needed in order to insure that Wp(μn, μ)
with p > 1 is of order 1√

n
. A complete characterization of the standard rate for

E(Wp(μn, μ)) will be provided in this part in terms of the functionals

(5.1) Jp(μ) =

∫ ∞

−∞

[F (x)(1− F (x))]p/2

f(x)p−1
dx,

where, as before, F is the distribution function associated with μ and f is the
density of the absolutely continuous component of μ. A first step is to achieve
upper-bounds with the help of the functional Jp(μ) (starting with the important
example p = 2). In this process, a further analysis will involve the I-function

(5.2) I(t) = IF (t) = f
(
F−1(t)

)
, 0 < t < 1,

of the distribution function F leading to sufficient conditions in terms of Cheeger-
type inequalities. Necessity and lower-bounds are examined next, based on the
refined lower integral bounds of Appendix B. The chapter is completed with a study
of the standard rate in the metric W∞. We refer to Appendix A for a complete
account on inverse functions and the associated I-functions and to Appendix B for
material on beta distributions and their densities.

5.1. General upper-bounds on E(W 2
2 (μn, μ))

This first paragraph is concerned with the important case p = 2 and states one
of the general results.

Given a probability measure μ on the real line R, recall from (5.1) the
J2-functional

(5.3) J2(μ) =

∫ ∞

−∞

F (x)(1− F (x))

f(x)
dx.

We agree that 0
0 = 0, and if μ is a delta-measure, that J2(μ) = 0.

37
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Theorem 5.1 (Upper-bound on E(W 2
2 (μn, μ))). For every n ≥ 1,

E
(
W 2

2 (μn, μ)
)
≤ 2

n+ 1
J2(μ).

Moreover, if νn is an independent copy of μn,

E
(
W 2

2 (μn, νn)
)
≤ 2

n+ 1
J2(μ).

The theorem is applicable when the functional J2(μ) is finite, which is a stronger
property than having a finite second moment (like finiteness of J1(μ) is stronger
than finiteness of the first absolute moment). For example, if μ has density of the
form f(x) = cα e−|x|α , x ∈ R, with a parameter α ≥ 1, then J2(μ) < ∞ for α > 2,
but J2(μ) = ∞ for all 1 ≤ α ≤ 2.

As we know from Appendix A, for the finiteness of J2(μ), it is necessary that μ
be supported on an interval Δ of the real line, finite or not, and f be a.e. positive
on it (and then integration in the definition of J2 should be restricted to Δ). An
equivalent approach to this definition is to require that the inverse distribution
function F−1 be absolutely continuous on (0, 1), in which case

J2(μ) =

∫ 1

0

[
(F−1)

′
(t)

]2
t(1− t) dt

where (F−1)
′
is the Radon-Nikodym derivative (cf. Corollary A.22). One can also

represent this derivative in terms of the associated I-function I(t) = f(F−1(t)),
0 < t < 1, of (5.2), so that

J2(μ) =

∫ 1

0

t(1− t)

I(t)2
dt.

For more details we refer to Sections A.4 and A.5 in Appendix A.

Proof of Theorem 5.1. Assume that J2(μ) is finite. In particular, the inverse func-
tion F−1 is absolutely continuous on (0, 1). First, we recall from Section 4.1 that
E(W 2

2 (μn, μ)) ≤ E(W 2
2 (μn, νn)). To derive the second bound of the theorem, let us

rewrite the representation of Theorem 4.6 in terms of the mean beta distribution
Bn of order n,

Bn =
1

n

n∑
k=1

Bk,n−k+1 ⊗Bk,n−k+1,

as

E
(
W 2

2 (μn, νn)
)
=

∫ 1

0

∫ 1

0

[
F−1(t)− F−1(s)

]2
dBn(t, s).

It remains to apply Proposition B.13 with u = F−1 which then yields∫ 1

0

∫ 1

0

[
F−1(t)− F−1(s)

]2
dBn(t, s) ≤ 2

n+ 1

∫ 1

0

[
F−1′(t)

]2
t(1− t) dt.

�
Let us now return to the canonical representation from Theorem 2.10,

W 2
2 (μn, μ) =

∫ 1

0

[
F−1
n (t)− F−1(t)

]2
dt =

1

n

∫ 1

0

ξn(t)
2 dt
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in terms of the empirical quantile processes

ξn(t) =
√
n

(
F−1
n (t)− F−1(t)

)
, 0 < t < 1.

Here, as before, F−1
n denotes the inverse of the empirical distribution function

Fn associated to the sample X1, . . . , Xn drawn from the distribution μ with the
distribution function F . Since F−1 is distributed according to μ under the Lebesgue
measure on (0, 1), the trajectories of ξn belong to L2(0, 1) if and only if μ has a
finite second moment. Under this condition, one may therefore wonder whether or
not, the distributions of ξn (as probability measures on this Hilbert space) have
a non-degenerate weak limit in L2(0, 1) in analogy with a similar property for the
distance W1. This question was solved in the work by del Barrio, Giné and Utzet
[B-G-U] under the additional regularity assumption on the distribution of the
sample, namely that the measure μ is supported on an interval (a, b), where it has
a positive differentiable density f such that

(5.4) sup
a<x<b

F (x)(1− F (x))

f(x)2
∣∣f ′(x)

∣∣ < ∞.

This condition is going back to [CR78] (see also [S-W]). Note that in terms of the
function I(t) = f(F−1(t)), (5.4) may be rewritten as

sup
0<t<t

t(1− t)

I(t)

∣∣I ′(t)∣∣ < ∞.

One of the main results of [B-G-U] may then be stated as follows. As before,
denote by W o the standard Brownian bridge.

Theorem 5.2. (B-G-U) Under the regularity assumption (5.4), if J2(μ) < ∞,
the distributions of the quantile processes ξn are weakly convergent in L2(0, 1) to
the distribution of the random process W o(t)/I(t). Moreover, in this case

nW 2
2 (μn, μ) →

∫ 1

0

W o(t)2

I(t)2
dt

as n → ∞ weakly in distribution on the real line.

In the same work [B-G-U], del Barrio, Giné and Utzet have also studied
an asymptotic behaviour of the empirical distributions and the distributions of
nW 2

2 (μn, μ) in the case where J2(μ) is infinite.

5.2. General upper-bounds on E(W p
p (μn, μ))

Theorem 5.1 admits a natural extension to the general case p ≥ 1 with the
Jp-functional of (5.1). The following result is a combination of Theorem 4.6 with
Proposition B.13 from Appendix B similarly to the case p = 2.

Theorem 5.3 (Upper-bound on E(W p
p (μn, μ))). For any p ≥ 1, and any n ≥ 1,

E
(
W p

p (μn, μ)
)
≤

(
5p√
n+ 2

)p

Jp(μ).
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In particular, ∥∥Wp(μn, μ)
∥∥
p
≤ 5p√

n
J1/p
p (μ),

which is effective when the integral Jp(μ) is finite.
In the case p = 2, the preceding amounts to Theorem 5.1 although with a worse

absolute constant. The same holds true for p = 1 in which case the statement is
covered by Theorem 3.2 with a worse constant and with an additional assumption
about the absolutely continuous component of μ. The latter may actually be re-
moved by a simple approximation argument (since the density f does not appear
explicitly in J1).

One immediate consequence of Theorem 5.1 (and essentially of the Poincaré-
type inequality of Proposition B.8) is that the finiteness of the integral Jp(μ) implies
the finiteness of the p-th absolute moment of μ. Indeed, since W p

p (μn, μ) < ∞ a.s.
and since μn is compactly supported, necessarily E(|X|p) < ∞. This fact is not so
obvious if we only look at the definition of Jp.

As in the case p = 2, if p > 1, for the finiteness of Jp(μ), the measure μ should
be supported on an interval, and f should be a.e. positive on it. In this case, in
terms of the I-function of (5.2), the definition of Jp(μ) becomes more natural

(5.5) Jp(μ) =

∫ 1

0

(√
t(1− t)

I(t)

)p

dt.

In particular, it may be seen that the quantities J
1/p
p (μ) grow with p.

Often, the last representation (5.5) is more convenient for determining whether
or not Jp(μ) is finite. For example, if μ is standard normal, the function I is

symmetric about t = 1
2 and I(t) ∼ t

√
2 log(1/t) as t → 0. Therefore, Jp(μ) < ∞ if

and only if 1 ≤ p < 2. The value p = 2 is indeed critical for the Gaussian measure,
since as we will see, the relation E(W2(μn, μ)) = O( 1√

n
) does not hold true in this

case.
Actually, given α > 1, let μ have density cα e−|x|α , x ∈ R, where cα > 0 is a

normalizing constant. For large x > 0, the associated distribution function F has
tails

1− F (x) =
cα
α

∫ ∞

x

1

yα−1
d (−e−yα

)

=
cα
α

[
1

xα−1
e−xα − (α− 1)

∫ ∞

x

1

yα
e−yα

dy

]
=

cα
α

1

xα−1
e−xα (

1 +O(x−1)
)
.

Hence, the I-function is symmetric about the point t = 1
2 and has an asymptotic

I(t) ∼ const · t (log(1/t))1/α∗
as t → 0, where α∗ = α

α−1 is the conjugate exponent.

Therefore, Jp(μ) < ∞ if and only if 1 ≤ p < 2. This conclusion applies, in
particular, to Gaussian measures.

On the other hand, the property Jp(μ) < ∞ with 1 ≤ p < 2 is true for a large
family of probability distributions μ on the line. This will be discussed in further
details in the next section. At this point, let us describe one class of compactly
supported distributions for which the standard rate is applicable regardless of the
range of p.
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Corollary 5.4. If the I-function of μ satisfies

(5.6) I(t) ≥ c
√
t(1− t), 0 < t < 1,

for some constant c > 0, then, for any p ≥ 1,[
E

(
W p

p (μn, μ)
)]1/p ≤ 5p

c
√
n
.

In particular, the uniform distribution on [0, 1] belongs to this class, so we
extend Theorem 4.8, although with a worse behaviour of the p-dependent constants.

Note that all probability measures such that I(t) ≥ c
√
t(1− t) have a compact

support. Indeed, if (a, b) is a supporting interval of μ, then, by Corollary A.23,

b− a =

∫ 1

0

dt

I(t)
≤ 1

c

∫ 1

0

dt√
t(1− t)

=
π

c
.

As we know from Section A.6 in Appendix A, these measures may be described as
Lipschitz transforms (with Lipschitz seminorm not greater than 1/c) of a special
symmetric probability distribution ν whose associated I-function is exactly I(t) =√
t(1− t). Namely, ν is supported on the interval [−π, π] and has there density

g(x) =
1

4
cos

(x

2

)
, |x| < π.

To relate with other known distribution, let us note that the beta distribution
with parameters α = β = 2 has a very similar I-function. Indeed, the beta density
and distribution function are given in this case by

f2,2(x) = 6x(1− x), F2,2(x) = x2(3− 2x), 0 ≤ x ≤ 1.

For x ∈ [0, 1
2 ], we have 3x ≤ f2,2(x) ≤ 6x and 2x2 ≤ F2,2(x) ≤ 3x2. The latter

implies
√

t
3 ≤ F−1

2,2 (t) ≤
√

t
2 for t ∈ [0, 1

2 ]. Since F−1
2,2 (t) ∈ [0, 1

2 ], we get that

f2,2
(
F−1
2,2 (t)

)
≤ 6F−1

2,2 (t) ≤ 6

√
t

2
≤ 6

√
t(1− t)

and

f2,2
(
F−1
2,2 (t)

)
≥ 3F−1

2,2 (t) ≥
√
3t ≥

√
3t(1− t).

Since the function I2,2(t) = f2,2(F
−1
2,2 (t)) is symmetric about the point t = 1/2, the

final estimates remain to hold for t ∈ [ 12 , 1] as well. Hence,√
3t(1− t) ≤ I2,2(t) ≤ 6

√
t(1− t), 0 < t < 1,

Therefore, the probability measures satisfying (5.6) in Corollary 5.4 can also be
obtained as Lipschitz transforms (with Lipschitz seminorm not greater than 6/c)
of the beta distribution with parameters α = β = 2.

In case of other beta distributions Bα,α with general parameter α > 0, the

corresponding Iα,α-functions behave near zero like tα/(α+1) and therefore satisfy
similar two-sided bounds

c0
(
t(1− t)

)α/(α+1) ≤ Iα,α(t) ≤ c1
(
t(1− t)

)α/(α+1)
, 0 < t < 1,

up to some positive constants c0 and c1, depending on α.
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5.3. Distributions with finite Cheeger constants

Theorem 5.3 may be applied to a large family of probability distributions μ,
especially when 1 ≤ p ≤ 2. For example, one may require that μ satisfies a Cheeger-
type isoperimetric inequality, or, equivalently, a Sobolev-type inequality

h

∫ ∞

−∞

∣∣u(x)−m
∣∣ dμ(x) ≤

∫ ∞

−∞

∣∣u′(x)
∣∣ dμ(x).

Here, u is an arbitrary absolutely continuous function with medianm = m(u) under
μ, and h ≥ 0 is a constant independent of u. An optimal value h = h(μ) in this
inequality is called the Cheeger isoperimetric constant. It admits a simple explicit
description

h(μ) = ess inf
x∈R

f(x)

min{F (x), 1− F (x)}

where F is the distribution function associated to μ and f is the density of an
absolutely continuous component of μ (cf. [B-H1]). In particular, for the property
h > 0 it is necessary that f be supported and be a.e. positive on the supporting
interval of μ.

For such measures, the inverse distribution function F−1 is absolutely contin-

uous, and the associated function I = 1/(F−1)
′
necessarily satisfies a lower-bound

I(t) ≥ h min{t, 1− t}, 0 < t < 1 (a.e.)

which readily implies the finiteness of Jp(μ) < ∞ for the range 1 ≤ p < 2. Moreover,
we have that

Jp(μ) ≤ 2h−p

∫ 1/2

0

t−p/2 dt <
4

2− p
.

Therefore, from Theorem 5.3, we obtain the following consequence.

Theorem 5.5 (Upper-bound on E((W p
p (μn, μ)) under Cheeger constant). Let

μ have a positive Cheeger constant h. Then, for any 1 ≤ p < 2 and any n ≥ 1,

E
(
W p

p (μn, μ)
)
≤ C

2− p

(
1

h
√
n

)p

,

where C > 0 is an absolute constant.

Theorem 5.5 admits an alternative proof using the Lipschitz images as devel-
oped in Section A.6 from Appendix A. Indeed, denote by ν the two-sided exponen-
tial distribution on the real line with density 1

2 e
−|x|. The canonical non-decreasing

map T : R → R which pushes forward ν onto μ has the Lipschitz semi-norm
‖T‖Lip ≤ 1

h . Write the order statistics for the sample Xk as X∗
k = T (U∗

k ), where

U∗
1 , . . . , U

∗
n are order statistics in the sample taken from ν. Let (V ∗

1 , . . . , V
∗
n ) be an

independent copy of (U∗
1 , . . . , U

∗
n) and put Y ∗

k = T (V ∗
k ). Then, by Theorem 4.3,
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and using the Lipschitz property of the map T , we get

E
(
W p

p (μn, μ)
)

≤ 1

n

n∑
k=1

E
(
|X∗

k − Y ∗
k |p

)
≤ 1

nhp

n∑
k=1

E
(
|U∗

k − V ∗
k |p

)
≤ 2p

hp
E

(
W p

p (νn, ν)
)

where νn is an empirical measure constructed for the sample drawn from ν. Thus,
at the expense of a factor we are reduced in Theorem 5.5 to the particular case of
the two-sided exponential distribution. In this case, estimates for E(|U∗

k −E(U∗
k )|p)

can be explored directly.

5.4. Connectedness and absolute continuity

In this section, we turn to necessary conditions needed to get a standard rate
for E(Wp(μn, μ)). Being bounded by using Jp(μ), it has already been empha-
sized after Theorem 5.1 for the case p = 2 (with reference to Appendix A) and
after Theorem 5.3 for p > 1 that the finiteness of this functional includes the
requirement that the distribution function F of μ has an absolutely continuous in-
verse function F−1. In particular, the support of μ has to be an interval. What
can one say therefore in this respect under the formally weaker assumption that
E(Wp(μn, μ)) = O

(
1√
n

)
?

As we will see later in Chapter 7, once μ has a disconnected support, the rate
for E(Wp(μn, μ)) cannot be asymptotically better than n−1/2p. In case p > 1, this
is of course worse than the standard rate. In fact, the validity of the standard rate
requires more. The purpose of this section is to prove the following statement.

Theorem 5.6 (Necessary condition for the standard rate). Given p > 1, as-
sume that

E
(
Wp(μn, μ)

)
= O

( 1√
n

)
holds true along a subsequence n = nk → ∞ as k → ∞. Then necessarily the
inverse function F−1 is absolutely continuous on (0, 1).

This observation is partly based on the corresponding formulations of the lower-
bounds appearing in Proposition B.18 of Appendix B. More precisely, the latter
yields the following statement.

Theorem 5.7. If νn is an independent copy of μn, then

E
(
W p

p (μn, νn)
)
≥ c

∫
{t(1−t)≥ 4√

n+1
}

[
F−1

(
t+

1

2
εn(t)

)
− F−1

(
t− 1

2
εn(t)

)]p

dt

and[
E

(
Wp(μn, νn)

)]p ≥ cp
∫
{t(1−t)≥ 4√

n+1
}

[
F−1

(
t+

1

6
εn(t)

)
−F−1

(
t− 1

6
εn(t)

)]p

dt
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where εn(t) =
√

t(1−t)
n+1 and c is a positive numerical constant.

Proof. According to Theorem 4.3, W p
p (μn, νn) =

1
n

∑n
k=1 |X∗

k − Y ∗
k |p where

X∗
k is the k-th order statistic for the sample X1, . . . , Xn drawn from μ, and Y ∗

k is
an independent copy of X∗

k . Hence,

E
(
W p

p (μn, νn)
)
=

∫ 1

0

∫ 1

0

∣∣F−1(x)− F−1(y)
∣∣p dBn(x, y)

where Bn is the mean beta square distribution of order n. Therefore, the first
inequality follows from the first bound of Proposition B.18.

In order to estimate E(Wp(μn, νn)) from below, we use the following general
inequality which is a variant of the triangle inequality. If ξ1, . . . , ξn are non-negative
random variables, then for all p ≥ 1,

E
(
(ξp1 + · · ·+ ξpn)

1/p
)
≥

[ (
E(ξ1)

)p
+ · · ·+

(
E(ξn)

)p]1/p
.

This gives a lower-bound[
E

(
Wp(μn, νn)

)]p ≥ 1

n

n∑
k=1

[
E

(
|X∗

k − Y ∗
k |

)]p
=

1

n

n∑
k=1

[
E

(∣∣F−1(U∗
k )− F−1(V ∗

k )
∣∣)]p.

Here, U∗
k is the k-th order statistic for a sample of size n drawn from the uni-

form distribution on (0, 1) with its independent copy V ∗
k . But U∗

k has the beta
distribution Bk,n−k+1, so we may apply the second bound of Proposition B.18 with
u = F−1. �

For the proof of Theorem 5.6, we need a general auxiliary lemma about integral
moduli of continuity.

Lemma 5.8. Let p > 1, and let u : (a, b) → R be a non-decreasing function
such that ∫ b−hn

a+hn

[
u(t+ hn)− u(t− hn)

]p
dt = O(hp

n) (n → ∞)

for some sequence hn ↓ 0. Then u has to be absolutely continuous on the interval
(a, b).

Proof. Since the absolute continuity is understood in the local sense, one may
assume that the interval (a, b) is finite, as well as the values u(a+) and u(b−). Then
we need to show that, for any ε > 0, there exists δ > 0 such that, for any sequence
of non-overlapping intervals (ai, bi) ⊂ [a, b],∑

i

(bi − ai) = δ =⇒
∑
i

(
u(bi)− u(ai)

)
≤ ε.

Without loss of generality, it suffices to require that there are finitely many of such
intervals, say N , and all of them have equal length δ/N . Moreover, it suffices
to consider such a property along any prescribed sequence N = Nn → ∞ with
sufficiently large n (this sequence may be chosen after ε is fixed).
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Thus, fix ε > 0 and put δ = (cε)q, where q = p
p−1 is the conjugate power and

c > 0 is a constant to be chosen later on. Because of the constraint δ < b− a, let ε
be small enough. Moreover, put N = [ δ

hn
] + 1.

Extending the function u as u(t) = u(a+) for t ≤ a and u(t) = u(b−) for t ≥ b
(and shrinking a little the interval (a, b) if necessary), the main hypothesis may be
written as the inequality∫ b

a

[
u(t+ hn)− u(t− hn)

]p
dt ≤ Cphp

n

holding with some constant C. Equivalently, for any measurable function v ≥ 0

such that
∫ b

a
v(t)q dt ≤ 1,∫ b

a

[
u(t+ hn)− u(t− hn)

]
v(t) dt ≤ Chn.

We apply this inequality to a constant indicator function v = 1
δ1/q

�A with the set

A =
⋃N

i=1(ai, bi), in which case it becomes

N∑
i=1

∫ bi

ai

[
u(t+ hn)− u(t− hn)

]
dt ≤ Cδ1/q hn.

Note that N = [ δ
hn

] + 1 > δ
hn

implying hn > δ
N . Therefore, for any t ∈ (ai, bi), we

have t− hn < ai < bi < t+ hn, so that by the monotonicity of u,

u(t+ hn)− u(t− hn) ≥ u(bi)− u(ai).

Hence, using again that bi − ai = δ/N , we get

δ

N

N∑
i=1

[
u(bi)− u(ai)

]
≤ Cδ1/q hn.

Finally, δ
hn

≥ 2 for sufficiently large n, hence N≤ 2δ
hn

and thus Cδ1/q hn

δ/N ≤2Cδ1/q= ε

with c = 1/(2C). The lemma is proved. �

It would be interesting to know whether or not the statement of Lemma 5.8
continues to hold for arbitrary functions u (without monotonicity assumption). Let
us describe an alternative argument for the class of functions of bounded variation,
which however works for the case p = 2, only (and hence for all p ≥ 2, since the
statement is getting weaker when p grows).

Without loss of generality, let us start with the hypothesis
∫ ∞
−∞(Δhu(t))

2 dt≤C
where, for h > 0,

Δhu(t) =
u(t+ h)− u(t− h)

2h
,

assuming that u is a function of bounded variation with u(−∞) = u(∞) = 0. In
particular, Δhu belongs to L2(R). Introduce the Fourier-Stieltjes transform

û(x) =

∫ ∞

−∞
eitx du(t), x ∈ R.
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Integrating by parts, the Fourier transform of the function Δhu is given, for any
x 
= 0, by

(FΔhu)(x) =

∫ ∞

−∞
eitx Δhu(t) dt

= lim
T→∞

∫ T

−T

eitx Δhu(t) dt =
sin(hx)

hx
û(x).

Hence, by Parseval’s theorem,∫ ∞

−∞

( sin(hx)

hx

)2∣∣û(x)∣∣2 dx = 2π

∫ ∞

−∞

(
Δhu(t)

)2
dt.

Restricting the left integral to the interval |xh| ≤ 1 and using sin(t) ≥ t sin(1), for
0 ≤ t ≤ 1, we conclude that∫ 1/h

−1/h

∣∣û(x)∣∣2 dx ≤ 2πC

sin2(1)
.

But, if this inequality holds true for all h > 0 small enough or even along some
sequence h = hn ↓ 0, in the limit we get∫ ∞

−∞
|û(x)|2 dx ≤ 2πC

sin2(1)
.

That is, û belongs to L2(R). But any function of bounded variation with a square
integrable Fourier-Stieltjes transform is absolutely continuous and has a square
integrable Radon-Nikodym derivative.

Proof of Theorem 5.6. Introducing an independent copy νn of μn, the hypothesis
may be stated as the inequality

E
(
Wp(μn, νn)

)
≤ C√

n
, n = nk,

holding with some constant C independent of k. Hence, under the hypothesis about
the standard rate, we obtain with the help of the second bound of Theorem 5.7 that,
for all 0 < t0 < 1

2 ,∫ 1−t0

t0

[
F−1(t+ hn)− F−1

(
t− hn)

]p
dt = O(hp

n) (n → ∞)

with hn(t) =
1
6 εn(t0). By Lemma 5.8, the function F−1 is absolutely continuous

on (t0, 1− t0) and thus it is absolutely continuous on the whole interval (0, 1). �

5.5. Necessary and sufficient conditions

The inequality of Theorem 5.3 can be reversed in the following asymptotic
forms.

Theorem 5.9. For all p ≥ 1,

lim inf
n→∞

[
np/2 E

(
W p

p (μn, μ)
)]

≥ cJp(μ)
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where c > 0 is an absolute constant. Moreover, for possibly another absolute con-
stant c > 0,

lim inf
n→∞

[√
n E

(
Wp(μn, μ)

)]p ≥ cpJp(μ).

Being combined, Theorems 5.3 and 5.9 provide the two-sided asymptotic bounds

cp Jp(μ) ≤ lim inf
n→∞

[
np/2 E

(
W p

p (μn, μ)
)]

≤ lim sup
n→∞

[
np/2 E

(
W p

p (μn, μ)
)]

≤ c′p Jp(μ)

with some p-dependent constants. As a result, we obtain the characterization of all
probability distributions μ on R to which μn are convergent in Wp at the standard
rate.

Corollary 5.10 (Necessary and sufficient condition for the standard rate).
Given p > 1, the following properties are equivalent:

a)
[
E(W p

p (μn, μ))
]1/p

= O( 1√
n
) as n → ∞;

b) E(Wp(μn, μ)) = O( 1√
n
) as n → ∞;

c) The latter property holds true along a subsequence n = nk → ∞ as k → ∞;

d) Jp(μ) < ∞.

Recall that, according to Corollary 3.6, we also have

E
(
W1(μn, μ)

)
= O

( 1√
n

)
⇐⇒ J1(μ) < ∞.

A similar characterization aboutW1 is also true when one considers the convergence
at the standard rate along a subsequence n = nk growing to infinity. So, the case
p = 1 may be included in Corollary 5.10.

Proof of Theorem 5.9. As a preliminary step, it was already proved in Theorem 5.6
that if

C = lim inf
n→∞

[√
n E

(
Wp(μn, μ)

)]p
< ∞,

then the inverse distribution function F−1 associated with μ is absolutely con-
tinuous. In particular, F−1 is differentiable a.e. (by the Lebesgue differentiation
theorem).

Set, for n ≥ 1, t ∈ (0, 1),

ξn(t) = F−1
(
t+ κ εn(t)

)
− F−1

(
t− κ εn(t)

)
,

where εn(t) =
√

t(1−t)
n+1 and κ > 0 is a parameter. Recall the lower-bound[
E

(
Wp(μn, νn)

)]p ≥ cp
∫
{t(1−t)≥ 4√

n+1
}
ξn(t)

p dt

obtained in Theorem 5.7 with κ = 1
6 and a positive numerical constant c, and where

νn is an independent copy of μn. Using the triangle inequality

E(Wp(μn, νn)) ≤ 2E(Wp(μn, μ))
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and applying our hypothesis, we may conclude that

cp
∫
{t(1−t)≥ 4√

n+1
}

(√
n ξn(t)

)p
dt < 2p C ′

holds true for infinitely many n with any prescribed value C ′ > C. But for almost
all t ∈ (0, 1),

lim
n→∞

√
n ξn(t) = lim

n→∞

[
F−1(t+ κ εn(t))− F−1(t− κ εn(t))

2κ εn(t)
2κ εn(t)

√
n

]
= (F−1)

′
(t) · 2κ

√
t(1− t).

Applying Fatou’s lemma, we then get∫ 1

0

[
(F−1)

′
(t)

√
t(1− t)

]p
dt ≤ 6p C ′

cp
.

Here, the left integral is exactly Jp(μ), thus proving the second assertion of the
theorem.

The first assertion is proved by a similar argument – we then need to apply
the first lower integral bound of Theorem 5.7 with κ = 1

2 . Theorem 5.9 is therefore
established. �

5.6. Standard rate for W∞ distance

In the last section of this part, we turn to the limit case p = ∞. Again,
let (Xk)k≥1 be a sample drawn from a distribution μ on the real line with the
distribution function F , and let μn be the empirical measure μn constructed for
the first n observations. As we know from Theorem 5.3, if the inverse function F−1

is absolutely continuous, then

E
(
Wp(μn, μ)

)
≤ 5p√

n
J1/p
p (μ)

where

Jp(μ) =

∫ 1

0

[
(F−1)

′
(t)

√
t(1− t)

]p
dt.

However, in the limit as p → ∞, this general upper-bound does not yield a reason-
able inequality, since the involved p-dependent constants grow to infinity. On the
other hand, there is a limit

(5.7) J∞(μ) = lim
p→∞

J1/p
p (μ) = ess sup

0<t<1
(F−1)

′
(t).

As an equivalent definition, one may also write

J∞(μ) = ‖F−1‖Lip.

Therefore, if this functional is finite, it is natural to expect that a similar bound
still holds for E(W∞(μn, μ)) in terms of J∞.

Theorem 5.11. For some positive numerical constants c0 and c1,

E
(
W∞(μn, μ)

)
≤ c1√

n
J∞(μ)
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and
lim inf
n→∞

√
n E

(
W∞(μn, μ)

)
≥ c0 J∞(μ).

Necessary and sufficient conditions ensuring the finiteness of J∞(μ) are given
in Proposition A.25. As a result, we obtain the following characterization comple-
menting the characterization in case of finite values of p (Corollary 5.10).

Corollary 5.12 (Standard rate for E(W∞(μn, μ)). If μ is non-degenerate, the
following properties are equivalent:

a) E(W∞(μn, μ)) = O( 1√
n
) as n → ∞;

b) This property holds true along a subsequence n = nk → ∞ as k → ∞;

c) J∞(μ) < ∞;

d) μ is supported on a finite interval Δ, and the absolutely continuous compo-
nent of μ has a density f which is separated from zero on Δ.

If one of these equivalent properties holds,

J∞(μ) =
1

ess infx∈Δ f(x)
.

Proof of Theorem 5.11. For the upper-bound, the argument is based on Theo-
rem 4.9 (i.e., in essence, on the Dvoretzky-Kiefer-Wolfowitz theorem). Indeed,
assuming that J∞(μ) is finite, that is, F−1 is Lipschitz, write X∗

k = F−1(U∗
k ),

Y ∗
k = F−1(V ∗

k ), where U∗
k is the k-th order statistic for a sample of size n drawn

from the uniform distribution μ′ on (0, 1), and V ∗
k is an independent copy of U∗

k . If
νn is an independent copy of μn, we get, by Lemma 4.2,

W∞(μn, νn) = max
1≤k≤n

|X∗
k − Y ∗

k |

= max
1≤k≤n

∣∣F−1(U∗
k )− F−1(V ∗

k )
∣∣ ≤ ‖F−1‖Lip max

1≤k≤n
|U∗

k − V ∗
k |.

Also, using the convexity of the functional ν �→ W∞(μ, ν),

W∞(μn, μ) ≤ EV

(
W∞(μn, νn)

)
where EV denotes expectation with respect to the random vector (V ∗

1 , . . . , V
∗
n ).

The two bounds give

E
(
W∞(μn, μ)

)
≤ J∞(μ)E

(
max

1≤k≤n
|U∗

k − V ∗
k |

)
= J∞(μ)E

(
W∞(μ′

n, ν
′
n)

)
≤ 2J∞(μ)E

(
W∞(μ′

n, μ
′)

)
,

where μ′
n is the empirical measure for the sample U1, . . . , Un with its independent

copy ν′n. By Theorem 4.9, the last expectation does not exceed C/
√
n.

To get the lower-bound, one may just apply Theorem 5.9 for every p ≥ 1 to
obtain

lim inf
n→∞

√
n E

(
W∞(μn, μ)

)
≥ lim inf

n→∞

√
n E

(
Wp(μn, μ)

)
≥ c J1/p

p (μ),

where c > 0 is an absolute constant. It remains to let p → ∞. The proof is
complete. �





CHAPTER 6

Sampling from log-concave distributions

This chapter turns to the question of obtaining two-sided bounds on the mean
transport distances E(W p

p (μn, μ)) for samples drawn from log-concave distribu-
tions. To this end, the chosen route of study is the one based on the application
of Theorem 4.3. It is therefore to focus, as a preliminary step, on the study of
the variances of order statistics associated to a sample drawn from a log-concave
distribution. We next achieve two-sided bounds on E(W p

p (μn, μ)) in terms of the
I-function associated to μ and obtain (by different means than the ones developed
in the previous chapter in the general case) necessary and sufficient condition for the
standard rate. Upper-bounds involving the variance of μ are studied next. Several
examples of interest, with specific rates, are discussed in the last paragraph.

The notation of this chapter are the same as in the preceding chapters. The
measure μ is a Borel probability on R with distribution function F . If (Xk)k≥1 is a
sequence of independent random variables with common law μ, for each n ≥ 1, μn

denotes the empirical measure 1
n

∑n
k=1 δXk

. If (X1, . . . , Xn) is a sample of random
variables, (X∗

1 ≤ · · · ≤ X∗
n) denotes the associated order statistics.

We refer besides to Appendix B and the references therein for some basic facts
on log-convave measures.

6.1. Bounds on variances of order statistics

If (X1, . . . , Xn) is drawn independently from a common absolutely continuous
law μ with distribution function F and density f , the k-th order statistic X∗

k ,
1 ≤ k ≤ n, has density

fk(x) = nCk−1
n−1 F (x)k−1

(
1− F (x)

)n−k
f(x), x ∈ R.

This explicit formula implies that, if the function f (and therefore F and 1−F ) is
log-concave, all the functions fk will be log-concave as well. As another explanation,
one may note that the joint distribution μn of the sample is log-concave on Rn, so
the joint distribution of (X∗

1 , . . . , X
∗
n) is log-concave as the normalized restriction

of μn to the cone x1 ≤ · · · ≤ xn in Rn.
Moreover, once X∗

k has a log-concave distribution, it shares all inequalities
mentioned in the general case (cf. Section B.1 of Appendix B). In particular, we
have the following relations implied by Proposition B.2,

1

12 Var(X∗
k)

≤ ess sup
x∈R

fk(x)
2 ≤ 1

Var(X∗
k)

.

To proceed, let thus μ be a probability measure on the real line with a log-
concave density f supported on some interval (a, b) ⊂ R, finite or not. Recall the

51
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associated I-function from Definition A.20

(6.1) I(t) = IF (t) = f
(
F−1(t)

)
, 0 < t < 1,

where F−1 : (0, 1) → (a, b) is the inverse of the distribution function F (x) =
μ((−∞, x]) restricted to x ∈ (a, b). As is well known (cf. e.g. [Bob2]), μ is log-
concave if and only if I is positive and concave on (0, 1). (Moreover, in general
any such function I generates a certain log-concave probability measure on the real
line, which is unique up to a shift parameter.) In terms of the I-function for this
measure μ, the density fk of the k-th order statistic X∗

k has maximum (essential
supremum)

ess sup
x∈R

fk(x) = nCk−1
n−1 sup

a<x<b
F (x)k−1

(
1− F (x)

)n−k
f(x)

= nCk−1
n−1 sup

0<t<1
tk−1(1− t)n−k I(t).

As a result, we obtain a preliminary description of the variance in terms of the
associated I-function.

Lemma 6.1. If μ is log-concave with the associated function I(t), for any
k = 1, . . . , n,

1√
12 sup0<t<1 Ik,n(t)

≤
√
Var(X∗

k) ≤ 1

sup0<t<1 Ik,n(t)

where

Ik,n(t) = nCk−1
n−1 tk−1(1− t)n−k I(t), 0 < t < 1.

For example, when μ is a uniform distribution on the unit interval (0, 1), then

I(t) = 1, and Ik,n(t) = nCk−1
n−1 tk−1(1− t)n−k is the density of the beta distribution

with parameters (k, n − k + 1). In this case, sup0<t<1 Ik,n(t) is attained at the

mode t = k−1
n−1 (n ≥ 2), but the maximum itself represents a rather complicated

expression in variables (k, n). In an opposition direction, recall that for the sample
from the uniform distribution we have the simple description

Var(X∗
k) =

k(n− k + 1)

(n+ 1)2 (n+ 2)
.

As a consequence of the preceding lemma, we get:

Corollary 6.2. Given k = 1, . . . , n, the maximum

Mk,n = max
0≤t≤1

nCk−1
n−1 tk−1(1− t)n−k

satisfies
1

12M2
k,n

≤ k(n− k + 1)

(n+ 1)2 (n+ 2)
≤ 1

M2
k,n

.

To make the bound of Lemma 6.1 effective, we need to properly bound from
above and below the maximum of the function Ik,n. To this aim, a first step is
achieved in the next lemma.
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Lemma 6.3. If I is a non-negative convex function on (0, 1), for any
k = 1, . . . , n,

Ik,n(tk,n) ≤ sup
0<t<1

Ik,n(t) ≤ e2 Ik,n(tk,n)

where tk,n = k
n+1 .

Proof. Only the right-hand side inequality requires a proof. To this end, we
study the constant C in an inequality of the form Ik,n(t) ≤ C Ik,n(tk,n) for every
0 < t < 1.

First, assume that I is non-decreasing. Then I represents an envelope of a
family of non-negative non-decreasing affine functions l(t) = a + bt on (0, 1) with
necessarily a ≥ 0 and b ≥ 0. The task thus reduces to showing that

tk−1(1− t)n−k l(t) ≤ C tk−1
k,n (1− tk,n)

n−k l(tk,n),

for any l with the described properties. Actually, since a, b ≥ 0, the above would
follow from the two inequalities

(6.2) tk−1(1− t)n−k ≤ C tk−1
k,n (1− tk,n)

n−k

and

(6.3) tk(1− t)n−k ≤ C tkk,n (1− tk,n)
n−k.

In (6.2), t = k−1
n−1 is a point of maximum for the left-hand side (n > 1), so this

inequality becomes(
k − 1

n− 1

)k−1(
n− k

n− 1

)n−k

≤ C

(
k

n+ 1

)k−1(
n− k + 1

n+ 1

)n−k

.

The latter readily follows from (n+1
n−1 )

n−1 = (1 + 2
n−1)

n−1 ≤ C, so C = e2 works.
Also, if k = n = 1, the inequality is immediate with C = 1. In the second inequality
(6.3), the left-hand side is maximized for t = k

n , and the inequality becomes(
k

n

)k(
n− k

n

)n−k

≤ C

(
k

n+ 1

)k(
n− k + 1

n+ 1

)n−k

.

This follows from
(
n+1
n

)n
=

(
1 + 1

n

)n ≤ C with C = e. Therefore, the lemma is
proved when I is non-decreasing.

Now, assume that I is non-increasing. Then I represents an envelope of a
family of non-negative non-increasing affine functions l(t) = a + b(1 − t) on (0, 1)
with necessarily a ≥ 0 and b ≥ 0. As above, the task reduces to showing that

tk−1(1− t)n−k l(t) ≤ C tk−1
k,n (1− tk,n)

n−k l(tk,n),

which would follow from the two inequalities

tk−1(1− t)n−k ≤ C tk−1
k,n (1− tk,n)

n−k,

tk−1(1− t)n−k+1 ≤ C tk−1
k,n (1− tk,n)

n−k+1.

Here, the first inequality was already considered in the previous step and was de-
rived with constant C = e2. In the second one, the left-hand side is maximized on
[0, 1] for t = k−1

n , and the inequality becomes(
k − 1

n

)k−1(
n− k + 1

n

)n−k+1

≤ C

(
k

n+ 1

)k−1(
n− k + 1

n+ 1

)n−k+1

.
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Again, this follows from
(
n+1
n

)n
=

(
1+ 1

n

)n ≤ C with c = e. Therefore, the lemma
is also proved when I is non-increasing.

Now, consider the remaining case: For some t0 ∈ (0, 1), I is non-decreasing on
(0, t0] and is non-increasing on [t0, 1).

Case 1: tk,n ≤ t0. Introduce the function

Ĩ(t) =

{
I(t), if 0 < t ≤ t0,
I(t0), if t0 ≤ t < 1.

Clearly, Ĩ is non-decreasing, so by the previous step, for any t ∈ (0, 1),

tk−1(1− t)n−k Ĩ(t) ≤ e2 tk−1
k,n (1− tk,n)

n−kĨ(tk,n).

But Ĩ ≥ I, while Ĩ(tk,n) = I(tk,n), so we arrive at the desired inequality.
Case 2: tk,n ≥ t0. Introduce the function

Ĩ(t) =

{
I(t0), if 0 < t ≤ t0,
I(t), if t0 ≤ t < 1.

Then, Ĩ is non-increasing, and a similar argument leads to the conclusion of the
lemma. �

Lemma 6.1 and Lemma 6.3 may be combined to get a two-sided bound

(6.4)
1

12 e4 I2k,n(tk,n)
≤ Var(X∗

k) ≤ 1

I2k,n(tk,n)

where, as before, tk,n = k
n+1 and

Ik,n(t) = nCk−1
n−1 tk−1(1− t)n−k I(t).

In fact, one can further simplify the expression Ik,n(tk,n) by using the following
elementary argument involving Corollary 6.2. Indeed, let

I(t) = t(1− t) J(t), 0 < t < 1.

Then, since tk(1− t)n−k+1 is maximized on [0, 1] for t = tk,n, we have

sup
0<t<1

Ik,n(t) = nCk−1
n−1 sup

0<t<1
tk(1− t)n−k+1 J(t)

≥ nCk−1
n−1 tkk,n(1− tk,n)

n−k+1 J(tk,n)

= nCk−1
n−1 sup

0<t<1
tk(1− t)n−k+1 J(tk,n)

= v J(tk,n)
nCk−1

n−1

(n+ 2)Ck
n+1

where
v = (n+ 2)Ck

n+1 sup
0<t<1

tk(1− t)n−k+1.

By Corollary 6.2 applied to the couple (k + 1, n+ 2),

v2 = M2
k+1,n+2 ≥ 1

12

(n+ 3)2 (n+ 4)

(k + 1) (n− k + 2)
.

In addition,
nCk−1

n−1

(n+ 2)Ck
n+1

=
k(n− k + 1)

(n+ 1) (n+ 2)
.
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Hence,

sup
0<t<1

Ik,n(t)
2 ≥ 1

12

(n+ 3)2 (n+ 4)

(k + 1) (n− k + 2)
·
(

k(n− k + 1)

(n+ 1) (n+ 2)

)2

· J(tk,n)2

=
1

12

(n+ 3)2 (n+ 4)

(n+ 1)2 (n+ 2)2
· k2(n− k + 1)2

(k + 1) (n− k + 2)

· 1

t2k,n(1− tk,n)2
· I(tk,n)2

=
1

12

(n+ 1)2 (n+ 3)2 (n+ 4)

(n+ 2)2
· 1

(k + 1) (n− k + 2)
· I(tk,n)2.

To simplify, use that

(k + 1) (n− k + 2) ≤ 4k (n− k + 1) = 4(n+ 1)2 tk,n(1− tk,n),

so that

sup
0<t<1

Ik,n(t)
2 ≥ n+ 4

48
· I(tk,n)

2

tk,n(1− tk,n)
.

Hence, by Lemma 6.1,

Var(X∗
k) ≤ 48

n+ 4

tk,n(1− tk,n)

I(tk,n)2
.

Using Lemma 6.3, the argument may be reversed by choosing different absolute
constants. Indeed, with the same value of v,

e−2 sup
0<t<1

Ik,n(t) ≤ Ik,n(tk,n)

= nCk−1
n−1 tkk,n(1− tk,n)

n−k+1 J(tk,n)

= v J(tk,n)
nCk−1

n−1

(n+ 2)Ck
n+1

.

Again, by Corollary 6.2,

v2 = M2
k+1,n+2 ≤ (n+ 3)2 (n+ 4)

(k + 1) (n− k + 2)
.

Hence, arguing as before,

e−2 sup
0<t<1

Ik,n(t)
2 ≤ (n+ 1)2 (n+ 3)2 (n+ 4)

(n+ 2)2
· 1

(k + 1) (n− k + 2)
· I(tk,n)2.

To simplify, use that (k+1) (n−k+2) ≥ (n+1)2 tk,n(1−tk,n) and n+3 ≤ 2(n+2),
so that

sup
0<t<1

Ik,n(t)
2 ≤ 4e2 (n+ 4) · I(tk,n)

2

tk,n(1− tk,n)
.

Hence, by Lemma 6.1,

Var(X∗
k) ≥ 1

48e2 (n+ 4)

tk,n(1− tk,n)

I(tk,n)2
.

The next statement summarizes the conclusions of this investigation.
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Theorem 6.4 (Two-sided bound on Var(X∗
k)). Let μ be log-concave with as-

sociated I-function I. For some absolute constants c0 > 0 and c1 > 0, for any
k = 1, . . . , n,

c0
n+ 1

tk,n(1− tk,n)

I(tk,n)2
≤ Var(X∗

k) ≤ c1
n+ 1

tk,n(1− tk,n)

I(tk,n)2

where tk,n = k
n+1 .

Here, the factor 1
n+1 may be viewed as the step tk,n − tk−1,n of the partition

of the interval [0, 1].

6.2. Two-sided bounds on E(W p
p (μn, μ))

On the basis of Theorem 6.4, we are now ready to reach two-sided bounds on
E (W p

p (μn, μ)) for log-concave probability distributions μ on the real line.
As announced, a basic starting point is the general two-sided bound from The-

orem 4.3,

2−p

n

n∑
k=1

E
(∣∣X∗

k − E(X∗
k)

∣∣p) ≤ E
(
W p

p (μn, μ)
)
≤ 2p

n

n∑
k=1

E
(∣∣X∗

k − E(X∗
k)

∣∣p).
Thus, the issue is how to effectively bound, both from above and below, the vari-
ances of order statistics, Var(X∗

k), or more generally, the quantities
E((|X∗

k − E(X∗
k)|p). By virtue of Theorem 6.4, the problem may be solved for

any (individual) log-concave measure μ.
First, let us emphasize that, due to the Khinchine-type inequality (B.4) (in

dimension one) for log-concave measures, it is sufficient to study the case p = 2,
only. Namely, for any p ≥ 1 and k = 1, . . . , n, we have

c0

√
Var(X∗

k) ≤
[
E

(∣∣X∗
k − E(X∗

k)
∣∣p)]1/p ≤ c1p

√
Var(X∗

k).

Hence, Theorem 6.4 yields the following lemma.

Lemma 6.5. Let μ be log-concave distribution with the associated I-function
I(t). For any p ≥ 1 and k = 1, . . . , n,(
c0
n

)p/2
(tk,n(1− tk,n))

p/2

I(tk,n)p
≤ E

(∣∣X∗
k − E(X∗

k)
∣∣p) ≤ pp

(
c1
n

)p/2
(tk,n(1− tk,n))

p/2

I(tk,n)p

where tk,n = k
n+1 , and c0 and c1 are positive absolute constants.

Performing summation over all k = 1, . . . , n leads to the two-sided bound(c0
n

)p/2

Σn ≤ E
(
W p

p (μn, μ)
)
≤ pp

(c1
n

)p/2

Σn

where

Σn =
1

n

n∑
k=1

(tk,n(1− tk,n))
p/2

I(tk,n)p
.

The natural step at this stage is to replace this Riemann sum with the cor-
responding integral (at the expense of constants depending on p, only). This can



6.2. TWO-SIDED BOUNDS ON E(Wp
p (μn, μ)) 57

be done using the concavity of the function I. For points tk,n ≤ t ≤ tk+1,n,
1 ≤ k ≤ n− 1, n ≥ 2, the concavity implies that

I(t) ≥ min
{
I(tk,n), I(tk+1,n)

}
.

In addition, in the same range,

t(1− t) ≤ 3min
{
tk,n(1− tk,n), tk+1,n(1− tk+1,n)

}
.

Let us check the last bound. If tk+1,n ≤ 1
2 , since the function t(1− t) is increasing

in 0 ≤ t ≤ 1
2 , we obviously have

t(1− t) ≤ tk+1,n(1− tk+1,n) ≤ 2tk,n(1− tk,n).

The case tk,n ≥ 1
2 is similar (or symmetric). Now, assume that tk,n ≤ 1

2 ≤ tk+1,n,

i.e. n−1
2 ≤ k ≤ n+1

2 . Then,

tk,n(1− tk,n) =
k

n+ 1

(
1− k

n+ 1

)
≥ n− 1

n+ 1
· 1
4

≥ 1

3
· 1
4

≥ 1

3
t(1− t).

Similarly, tk+1,n(1− tk+1,n) =
k+1
n+1 (1−

k+1
n+1 ) ≥

1
3 t(1− t). Using these bounds, we

obtain that the integral ∫ tk+1,n

tk,n

(t(1− t))p/2

I(t)p
dt

does not exceed

3p/2 (tk+1,n − tk,n)
(min{tk,n(1− tk,n), tk+1,n(1− tk+1,n)})p/2

min{I(tk,n), I(tk+1,n)}p
,

which in turn is bounded from above by

3p/2

n+ 1

[
(tk,n(1− tk,n))

p/2

I(tk,n)p
+

(tk+1,n(1− tk+1,n))
p/2

I(tk+1,n)p

]
.

Hence, after summation over k = 1, . . . , n− 1, we arrive at∫ n/(n+1)

1/(n+1)

(t(1− t))p/2

I(t)p
dt ≤ 2 · 3p/2 Σn.

Now, to derive a similar reverse bound, by the concavity of I (and since I ≥ 0),
whenever 0 < a < b < 1, we have

I(t)

t
≤ I(a)

a
for a ≤ t < 1 and

I(t)

1− t
≤ I(b)

1− b
for 0 < t ≤ b.

Hence, multiplying these two inequalities, we get in the interval a ≤ t ≤ b

t(1− t)

I(t)2
≥ a(1− b)

I(a)I(b)
.

Also, using I(t)
t ≤ I(a)

a at t = b, we have I(b)
b ≤ I(a)

a , so a(1−b)
I(a)I(b) ≥

a2(1−b)
bI(a)2 and thus

t(1− t)

I(t)2
≥ a2(1− b)

bI(a)2
, a ≤ t ≤ b.

In case a = tk,n, b = tk+1,n, 1 ≤ k ≤ n− 1,

a2(1− b)

b
= a(1− a)

a(1− b)

b(1− a)
= a(1− a)

k(n− k)

(k + 1)(n− k + 1)
≥ 1

4
a(1− a),
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hence,
t(1− t)

I(t)2
≥ 1

4

tk,n(1− tk,n)

I(tk,n)2
, tk,n ≤ t ≤ tk+1,n.

Similarly (so as to involve the value k = n on the right-hand side), one may

apply the previous bound I(t)
1−t ≤ I(b)

1−b at t = a, that is, I(a)
1−a ≤ I(b)

1−b . It gives, as
before,

t(1− t)

I(t)2
≥ a(1− b)

I(a)I(b)
≥ a(1− b)2

(1− a)I(b)2
.

Again, in case a = tk,n, b = tk+1,n, 1 ≤ k ≤ n− 1,

a(1− b)2

1− a
= b(1− b)

a(1− b)

b(1− a)
≥ 1

4
b(1− b),

hence,
t(1− t)

I(t)2
≥ 1

4

tk+1,n(1− tk+1,n)

I(tk+1,n)2
, tk,n ≤ t ≤ tk+1,n,

and with the previous bound for the left end point

t(1− t)

I(t)2
≥ 1

4
max

{
tk,n(1− tk,n)

I(tk,n)2
,
tk+1,n(1− tk+1,n)

I(tk+1,n)2

}
.

Now, raising this inequality to the power p/2, we get, for all tk,n ≤ t ≤ tk+1,n,

(t(1− t))p/2

I(t)p
≥ 2−p−1

[
(tk,n(1− tk,n))

p/2

I(tk,n)p
+

(tk+1,n(1− tk+1,n))
p/2

I(tk+1,n)p

]
.

After integration over [tk,n, tk+1,n] and summation over k = 1, . . . , n− 1, we arrive
at ∫ n/(n+1)

1/(n+1)

(t(1− t))p/2

I(t)p
dt ≥ 2−p−1 n

n+ 1
Σn.

Together with Lemma 6.5 and Theorem 4.3, we may summarize the conclusions.

Theorem 6.6 (Two-sided bounds on E(W p
p (μn, μ))). Let μ be log-concave with

the associated I-function I. For any p ≥ 1 and any n ≥ 2,(c0
n

)p/2
∫ n/(n+1)

1/(n+1)

(t(1− t))p/2

I(t)p
dt ≤ E

(
W p

p (μn, μ)
)

≤
(c1p

2

n

)p/2
∫ n/(n+1)

1/(n+1)

(t(1− t))p/2

I(t)p
dt

where c0 and c1 are positive absolute constants.

In the basic particular cases p = 1 and p = 2, these two-sided bounds become

(6.5)
c0√
n

∫ n/(n+1)

1/(n+1)

√
t(1− t)

I(t)
dt ≤ E

(
W1(μn, μ)

)
≤ c1√

n

∫ n/(n+1)

1/(n+1)

√
t(1− t)

I(t)
dt

and respectively

(6.6)
c0
n

∫ n/(n+1)

1/(n+1)

t(1− t)

I(t)2
dt ≤ E

(
W 2

2 (μn, μ)
)

≤ c1
n

∫ n/(n+1)

1/(n+1)

t(1− t)

I(t)2
dt

for absolute constants c0 > 0 and c1 > 0.
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Note that the case n = 1 should be excluded from such inequalities, since
the above integrals are then vanishing. According to Lemma 6.5, the bounds of
Theorem 6.6 for n = 1 need to be changed to(

c0

I( 12 )

)p

≤ E
(
W p

p (μ1, μ)
)
≤

(
c1p

I( 12 )

)p

with some positive absolute constants c0 and c1. Here μ1 = δX1
is just a delta

measure at the random point X1 distributed according to μ.

6.3. Khinchine-type inequality

To start with in this paragraph, let us rewrite the two-sided bounds in The-
orem 6.6 explicitly in terms of the distribution function and the density of the
sample. Changing the variable t = F (x) in the involved integrals, we indeed obtain
the following statement.

Theorem 6.7. Let μ be log-concave distribution with distribution function F
and density f . For any p ≥ 1, and any n ≥ 2, with some absolute constants c0 > 0
and c1 > 0, (c0

n

)p/2

Jp,n(μ) ≤ E
(
W p

p (μn, μ)
)
≤

(c1p
2

n

)p/2

Jp,n(μ),

where

(6.7) Jp,n(μ) =

∫ F−1( n
n+1 )

F−1( 1
n+1 )

(F (x)(1− F (x)))p/2

f(x)p−1
dx.

In the case p = 1,

J1,n(μ) =

∫ F−1( n
n+1 )

F−1( 1
n+1 )

√
F (x)(1− F (x)) dx,

and Theorem 6.7 is therefore telling us that
c0√
n
J1,n(μ) ≤ E

(
W1(μn, μ)

)
≤ c1√

n
J1,n(μ).

This should be compared to Theorem 3.5. In a slightly modified form (due to
Lemma 3.8), the two-sided bounds of Theorem 3.5 may be written as

c0
(
Ãn + J1,n(μ)

)
≤ E

(
W1(μn, μ)

)
≤ c1

(
Ãn + J1,n(μ)

)
where

Ãn =

∫ F−1( 1
n+1 )

0

F (x)
(
1− F (x)

)
dx +

∫ 1

F−1( n
n+1 )

F (x)
(
1− F (x)

)
dx.

Hence, by Theorem 6.7, when μ is log-concave, the term Ãn is dominated by J1,n(μ)
and therefore can be removed from the bounds of Theorem 3.5.

One immediate consequence of Theorem 6.7 is necessary and sufficient con-
ditions for the standard rate, which have already been discussed with completely
different tools in the general case (cf. Corollary 5.10).



60 6. SAMPLING FROM LOG-CONCAVE DISTRIBUTIONS

Corollary 6.8 (Characterization of standard rate for log-concave distribu-
tion). Assume that μ is log-concave distribution with distribution function F and
density f . Given p ≥ 1, [

E
(
W p

p (μn, μ)
)]1/p ≤ C√

n

with a constant C > 0 independent of n, if and only if

Jp(μ) =

∫ 1

0

(F (x)(1− F (x)))p/2

f(x)p−1
dx < ∞.

Although Theorem 6.7 provides two-sided bounds for E(W p
p (μn, μ), one may

wonder whether or not it is possible to improve upper-bounds for E(Wp(μn, μ)).
This is in fact not possible, at least in the class of log-concave distributions μ. More
precisely, in this case, E(W p

p (μn, μ))
1/p and E(Wp(μn, μ)) must have similar rates.

To this end, we make use of the multidimensional Khinchine-type inequality
from (B.4). Given fixed p ≥ 1, this result may be applied, in particular, to the
random vector X = (X∗

1 , . . . , X
∗
n, Y

∗
1 , . . . , Y

∗
n ) in the Euclidean space R2n equipped

with the semi-norm∥∥(x, y)∥∥ =

(
1

n

n∑
k=1

|xk−yk|p
)1/p

, x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn.

As before, (Y ∗
1 , . . . , Y

∗
n ) is an independent copy of the vector (X∗

1 , . . . , X
∗
n) of order

statistics, constructed for the sample drawn from a given log-concave probability
distribution μ on the real line. If μn and νn denote the empirical measures for the
two vectors, we have (cf. Section 4.2) that

‖X‖ = Wp(μn, νn).

Hence, by the multidimensional Khinchine-type inequality (B.4) applied to this
semi-norm [

E
(
W p

p (μn, νn)
)]1/p ≤ Cp E

(
Wp(μn, νn)

)
.

In view of Theorem 4.3, this relation refines Theorem 6.7 in the following form.

Theorem 6.9. Assume that μ is log-concave distribution with distribution func-
tion F and density f . For any p ≥ 1, and any n ≥ 2,

c0
p
√
n
J1/p
p,n (μ) ≤ E

(
Wp(μn, μ)

)
≤

[
E

(
W p

p (μn, μ)
)]1/p ≤ c1p√

n
J1/p
p,n (μ)

where c0 and c1 are positive absolute constants.

In fact, the difference between E(Wp(μn, μ)) and
[
E(W p

p (μn, μ))
]1/p

cannot be
large at least for p ≤ 2 in view of concentration inequalities for random variables
Wp(μn, μ). This interesting property also holds for many other non-logconcave
distributions μ, and admits further extensions related to the concentration phe-
nomena for non-product measures on Rn (not considered here). For example, it
is possible to control deviations of Wp(μn, μ) from its mean if μ satisfies certain
integro-differential inequalities of additive type. One family of such inequalities will
be discussed in Section 7.1.
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6.4. Bounds in terms of the variance

To start with in this section, observe that Theorem 5.5 actually covers the
family of all log-concave probability distributions on the line. Indeed, as recalled in
Appendix B, Section B.1, for such distributions, h (the Cheeger constant) is equal
to 2f(m) and 1

h2 ≤ 3 Var(X1), yielding therefore the following corollary.

Corollary 6.10. Let μ be log-concave on the line with the standard deviation
σ. Then, for any 1 ≤ p < 2 and any n ≥ 1,

E
(
W p

p (μn, μ)
)
≤ C

2− p

(
σ√
n

)p

where C > 0 is an absolute constant.

In order to involve the important value p = 2 in such a statement, an extra
condition on μ is required. As another application of Theorem 5.3 – or more
precisely, of Theorem 5.1 (which provides a better constant) – we mention here one
such sufficient condition.

Corollary 6.11. Let μ be log-concave supported on a finite interval [a, b].
Then, for all n ≥ 1,

E
(
W 2

2 (μn, μ)
)
≤ C(b− a)2

n+ 1

where C > 0 is an absolute constant (one may take C = 4
log 2).

Proof. It is enough to provide a suitable lower-bound on the I-function asso-
ciated to the measure μ. It is known (cf. [Bob4], Proposition 2.1) that

(b− a) I(t) ≥ t log
1

t
+ (1− t) log

1

1− t
, 0 < t < 1.

Hence,

J2(μ) =

∫ 1

0

t(1− t)

I(t)2
dt ≤ 2(b− a)2

∫ 1/2

0

t(1− t)

(t log 1
t )

2
dt

≤ 2(b− a)2
∫ 1/2

0

1

t log2 1
t

dt =
2(b− a)2

log 2
.

The conclusion follows from Theorem 5.1. �

As we will now see, for the range p > 2, the compactness of the support is how-
ever not sufficient to get a standard rate, i.e. for the relation E(Wp(μn, μ)) = O( 1√

n
)

to hold. Applying Theorem 6.6, we can extend Corollary 6.10 to the range p ≥ 2,
although with weaker rates. Furthermore, the universal estimate of Corollary 6.10
is no longer true for the critical value p = 2, although the rate 1√

n
does hold for

W2 for the class of log-concave probability distributions with a compact support
(Corollary 6.11).
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Corollary 6.12. Let μ be log-concave with standard deviation σ. Then, for
any n ≥ 2,

E
(
W 2

2 (μn, μ)
)
≤ Cσ2 log n

n
,

while for p > 2,

E
(
W p

p (μn, μ)
)
≤ Cp σ

p

n
where Cp > 0 depends on p, only.

Proof. One may use the argument described after Theorem 5.5. For any
p ≥ 1, in terms of the Cheeger constant h = h(μ), it yields a comparison bound

E
(
W p

p (μn, μ)
)

≤ 1

n

n∑
k=1

E
(
|X∗

k − Y ∗
k |p

)
≤ 1

nhp

n∑
k=1

E
(
|U∗

k − V ∗
k |p

)
≤ 2p

hp
E

(
W p

p (νn, ν)
)

where (U∗
1 , . . . , U

∗
n) and (V ∗

1 , . . . , V
∗
n ) are order statistics for two independent sam-

ples (U1, . . . , Un) and (V1, . . . , Vn) taken from the two-sided exponential distribu-
tion ν on the real line with density 1

2 e
−|x|, and where νn is the empirical measure

on (U1, . . . , Un). Hence, keeping h to be fixed, we are reduced to the case of the
measure ν.

Now, since Iν(t) = min{t, 1− t}, Theorem 6.6 with p ≥ 2 gives, for any n ≥ 2,

E
(
W p

p (νn, ν)
)

≤
(c1p

2

n

)p/2
∫ n/(n+1)

1/(n+1)

(t(1− t))p/2

Iν(t)p
dt

≤ 2
(c1p

2

n

)p/2
∫ 1/2

1/(n+1)

t−p/2 dt

≤ (c′1p)
p

p− 2

1

n
,

where c1, c
′
1 > 0 are absolute constants and where we assume that p > 2 on the

last step. When p = 2 the last integral grows like log n. To finish the proof, it
remains to use an upper-bound 1

h ≤ σ
√
3 (which was already mentioned before

Corollary 6.10). �

Both estimates of Corollary 6.12 are sharp with respect n. Indeed, by the
lower-bound of Theorem 6.6, for the two-sided exponential distribution ν we have
with some absolute constant c0 > 0

E
(
W p

p (νn, ν)
)

≥
(c0
n

)p/2
∫ n/(n+1)

1/(n+1)

(t(1− t))p/2

Iν(t)p
dt

≥
( c0
2n

)p/2
∫ 1/2

1/(n+1)

t−p/2 dt.

If p > 2, the last expression decays like 1
n , while for p = 2 it decays like log n

n .
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Moreover, by Theorem 6.9,

E
(
W2(νn, ν)

)
≥ c

√
log n

n

and, for p > 2,

E
(
Wp(νn, ν)

)
≥ cp

n1/p

where c > 0 is absolute and cp > 0 depends on p, only. Hence, the rates in Corol-
lary 6.12 cannot be improved for the potentially smaller quantity E(Wp(μn, μ))

p.

Remark 6.13. Without appealing to the lower-bound of Theorem 6.6, the
sharpness of the estimates in Corollary 6.12 can be verified directly on the example
of the one-sided exponential distribution ν with density e−x (x > 0). Indeed, in this
case (cf. e.g. [Ga]) the k-th order statistic U∗

k is equidistributed with the random
variable

Tk =
k∑

j=1

Uj

n− j + 1

where (U1, . . . , Un) is the sample taken from ν. Hence,

n∑
k=1

Var(U∗
k ) =

n∑
k=1

k∑
j=1

1

(n− j + 1)2

=
n∑

j=1

1

n− j + 1
= 1 +

1

2
+ · · ·+ 1

n
∼ log n,

so that, by Theorem 4.3, E(W 2
2 (νn, ν)) has the rate log n

n . For p > 2, simply use

E
(∣∣U∗

k − E(U∗
k )

∣∣p) ≥ Var(U∗
k )

p/2.

Since

Var(U∗
n) =

n∑
j=1

1

(n− j + 1)2
≥ 1,

again by Theorem 4.3,

E
(
W p

p (νn, ν)
)

≥ 1

2p n

n∑
k=1

E
(∣∣U∗

k − E(U∗
k )

∣∣p)
≥ 1

2p n
E

(∣∣U∗
n − E(U∗

n)
∣∣p) ≥ 1

2p n
.

6.5. Some other log-concave examples

For a log-concave probability distribution μ on the real line, Theorem 6.6 may
provide a variety of possible rates for E(Wp(μn, μ)), especially for the range p > 2.
More precisely, the rate may vary from 1√

n
to 1

n1/p when p > 2, while Corollary 6.10

guarantees the standard rate 1√
n
, when p < 2.

In the previous section, we considered the example of the exponential distribu-
tions (both one-sided and two-sided). Here are some further specific examples.
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Corollary 6.14 (Two-sided bounds for Gaussian measure). Let n ≥ 3. If μ
is the standard Gaussian measure,

c log log n

n
≤

[
E

(
W2(μn, μ)

)]2 ≤ E
(
W 2

2 (μn, μ)
)
≤ C log log n

n

where c, C > 0 are numerical. For p > 2,

cp
n (logn)p/2

≤
[
E

(
Wp(μn, μ)

)]p ≤ E
(
W p

p (μn, μ)
)
≤ Cp

n (logn)p/2

where the involved constants cp, Cp > 0 depend on p, only.

Indeed, in the Gaussian case the associated I-function is symmetric about the
point t = 1

2 and satisfies, for 0 < t ≤ 1
2 ,

c0t
√
log(1/t) ≤ I(t) ≤ c1t

√
log(1/t)

with some positive constants c0 and c1. Hence, by Theorem 6.6, within p-dependent
factors, the value E(W p

p (μn, μ)) is described by

1

np/2

∫ 1/2

1/(n+1)

(t(1− t))p/2

I(t)p
dt ∼ 1

np/2

∫ 1/2

1/(n+1)

dt

(t log(1/t))p/2
.

When p = 2 the last integral grows like log log n. If p > 2, the latter integral (up
to the factor 1

p
2−1 ) may be integrated by parts to obtain

−
∫ 1/2

1/(n+1)

1

(log(1/t))p/2
d(1/t)

p
2−1 =

(n+ 1)
p
2−1

(log(n+ 1))p/2
− 2

p
2−1

(log 2)p/2

+
p

2

∫ 1/2

1/(n+1)

dt

(t log(1/t))p/2 log(1/t)
.

Therefore, this integral grows like the first term, i.e. n
p
2−1(logn)−p/2.

As a further example, consider the family of the beta distributions μ with
parameters α ≥ 1 and β = 1. Any such measure is supported on the unit interval
[0, 1], where it has the density and distribution function

fα(x) = αxα−1, Fα(x) = xα, 0 ≤ x ≤ 1.

Hence, the associated I-function is given by

Iα(t) = fα
(
F−1
α (t)

)
= α t(α−1)/α, 0 < t < 1.

For example, the value α = 1 corresponds to the uniform distribution on [0, 1].

If α ≤ 2, then Iα(t) ≥ α
√
t(1− t), and according to Corollary 5.4, we obtain a

standard rate [
E

(
W p

p (μn, μ)
)]1/p ≤ Cp√

n

where p ≥ 1 is arbitrary, and C > 0 is an absolute constant.
If α > 2, the same conclusion remains to hold for the range 1 ≤ p ≤ 2 (recall

Corollary 6.11 concerning general compactly supported log-concave measures).
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Let now α > 2 and p > 2. Again, by Theorem 6.6, within (α, p)-dependent
factors the value E(W p

p (μn, μ)) is given by

1

np/2

∫ n/(n+1)

1/(n+1)

(t(1− t))p/2

I(t)p
dt ∼ 1

np/2

∫ 1

1/(n+1)

dt

tp(
1
2−

1
α )

.

Here the last integral is bounded whenever p < 2α
α−2 . It grows like log n for p = 2α

α−2 ,

and grows like nκ with κ = p( 12 − 1
α )− 1 when p > 2α

α−2 . Thus, in the latter case,

1

np/2

∫ 1

1/(n+1)

dt

tp(
1
2−

1
α )

∼ 1

n
p
α+1

.

As a conclusion, we get:

Corollary 6.15 (Two-sided bounds for beta distributions). Let μ be the beta
distribution with parameters α ≥ 1 and β = 1. If 1 ≤ α ≤ 2, p ≥ 1, or if α > 2,
1 ≤ p < 2α

α−2 , then, for n ≥ 1,

c0√
n

≤
[
E

(
W p

p (μn, μ)
)]1/p ≤ c1√

n
,

while for α > 2 and p > 2α
α−2 ,

c0

n
1
α+ 1

p

≤
[
E

(
W p

p (μn, μ)
)]1/p ≤ c1

n
1
α+ 1

p

.

Here the involved constants c0 and c1 are positive and may depend on α and p,
only. In the critical case p = 2α

α−2 with α > 2, up to p-dependent constants, we also
have

c0 (log(n+ 1))1/p√
n

≤
[
E

(
W p

p (μn, μ)
)]1/p ≤ c1 (log(n+ 1))1/p√

n
.

A similar conclusion may also be made about the beta distributions with pa-
rameters α = β ≥ 1 (in which case the distributions are symmetric about the point
x = 1/2).

Thus, when p is large, the rate can be rather weak, even for compactly sup-
ported measures.





CHAPTER 7

Miscellaneous bounds and results

This chapter collects a number of results both supplementing the previous in-
vestigations and of independent interest. The first paragraph essentially shows that
for classes of distributions μ satisfying a Poincaré-type inequality, the behaviours

of E(Wp(μn, μ)) and
[
E(W p

p (μn, μ))
]1/p

are of the same order. Next, we describe
upper-bounds in terms of modulus of continuity of the inverse distribution function
F−1. Two-sided bounds for classes of compactly supported distributions are exam-
ined in the further paragraph, with in particular a detailed study of connectness (of
the support of μ) and absolute continuity (of F−1). While moments cannot achieve
the standard rate in general, nevertheless the use of alternative tools such as the
Zolotarev ideal metrics allow for the Kantorovich distance W2. The last section
completes the study of convergence in W∞.

The setting is as in the preceding chapters, with a probability μ on R with
distribution function F and the associated empirical measures μn = 1

n

∑n
k=1 δXk

,
n ≥ 1, on a sample (Xk)k≥1 of independent random variables with common law μ.

7.1. Deviations of Wp(μn, μ) from the mean

This paragraph investigates, in a general setting, the possible deviations of the
random variablesWp(μn, μ) from their expected values. We will pose the hypothesis
on the spectral gap of the underlying distribution μ.

Refereing to [B-H2,L2,L3,B-G-L]..., a Borel probability measure P on Rn is
said to satisfy a Poincaré-type inequality with constant λ > 0, if for any bounded
smooth function u on Rn,

(7.1) λ VarP (u) ≤
∫
Rn

|∇u|2 dP.

On the real line, a full characterization of such probability measures is well-known.
In particular, they have an interval as a support (finite or not), and a finite ex-
ponential moment (cf. the preceding references). In particular, for a log-concave
probability distribution μ, there is a lower-bound

λ ≥ 1

12σ2
,

where σ is the standard deviation of μ (cf. [Bob4]). If μ on the real line satisfies
(7.1) with constant λ > 0, so does P = μ⊗n on Rn with the same constant.

The following theorem is essentially contained in the works of Gozlan and
Léonard (see [Go,G-L1,G-L2]).

67
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Theorem 7.1 (Concentration of Wp(μn, μ)). Assume that μ satisfies a
Poincaré-type inequality on the real line with constant λ > 0. Then, for any p ≥ 1
and r > 0, and any n ≥ 1,

P

{ ∣∣Wp(μn, μ)− E
(
Wp(μn, μ)

)∣∣ ≥ r
}

≤ C exp
{
− 2n1/max(p,2)

√
λ r

}
,

where C > 0 is an absolute constant.

The proof of Theorem 7.1 is based on two elementary and known lemmas.

Lemma 7.2. The map Tn : Rn → Zp(R) assigning to each point

x = (x1, . . . , xn) ∈ Rn

the “empirical” measure

Tn(x) =
1

n

n∑
k=1

δxk

has Lipschitz seminorm ‖Tn‖Lip = n−1/max(p,2) with respect to the Euclidean metric

and the metric Wp (p ≥ 1).

Proof. Consider the map which assigns to each point x = (x1, . . . , xn) ∈ Rn

the vector x∗ = (x∗
1, . . . , x

∗
n) ∈ Rn whose components are the same as of x, but are

arranged in increasing order, x∗
1 ≤ · · · ≤ x∗

n. By Lemma 4.2, this map is Lipschitz
with respect to any �p-norm ‖ · ‖p (p ≥ 1) in the sense that for all x, y ∈ Rn,

‖x∗ − y∗‖pp =
n∑

k=1

|x∗
k − y∗k|p ≤ ‖x− y‖pp =

n∑
k=1

|xk − yk|p.

However, it will be more convenient to relate the latter distance to the Euclidean
norm. If 1 ≤ p ≤ 2, Hölder’s inequality yields ‖x‖p ≤ n(2−p)/2p ‖x‖2, while for
p ≥ 2 we have ‖x‖p ≤ ‖x‖2. Hence,

‖x∗ − y∗‖p ≤
{

n(2−p)/2p ‖x− y‖2, if 1 ≤ p ≤ 2,
‖x− y‖2, if p > 2,

where both inequalities are sharp.
Now, recalling Lemma 4.2, for x, y ∈ Rn,

W p
p

(
Tn(x), Tn(y)

)
=

1

n
‖x∗ − y∗‖pp ≤ 1

n
‖x− y‖pp.

Hence, if Rn is equipped with the Euclidean distance, the Lipschitz semi-norm of

the map Tn equals n−1/p for p ≥ 2, but is equal to n(2−p)/2p

n1/p = 1
n1/2 , for 1 ≤ p ≤ 2.

This completes the proof of the lemma. �

Lemma 7.3. Let P be a Borel probability measure on Rn with concentration
function

αP (r) = sup
{
1− P (Ar) : P (A) ≥ 1

2

}
, r > 0.

Then, the concentration function αQ for the image Q = PT−1
n of P under the map

Tn satisfies, for all r > 0,

αQ(r) ≤ αP

(
n1/max(p,2) r

)
.
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Here, Ar denotes an open r-neighbourhood of a set A ⊂ Rn with respect to the
Euclidean distance, while the definition of the concentration function αQ is similar
and refers to the metric Wp on Zp(R). Note that Q is supported on a relatively
“small” subset of Zp(R), namely, the collection of all discrete probability measures
on the real line having at most n atoms.

The statement of Lemma 7.3 immediately follows from Lemma 7.2. Indeed, for
any set B ⊂ Zp(R), there is a general set inclusion[

T−1
n (B)

]Lr ⊂ T−1
n (Br), r > 0,

where L denotes the Lipschitz seminorm of Tn (explicitly described in Lemma 7.2).
Hence, if Q(B) = P (T−1

n (B)) ≥ 1/2, we have

1−Q(Br) ≤ 1− P
((

T−1
n (B)

)Lr
)

≤ αP (Lr).

It remains to take the supremum over all B such that Q(B) ≥ 1/2.

Proof of Theorem 7.1. For any Borel probability measure P on Rn admitting a
Poincaré-type inequality with constant λ > 0, it is classical that its concentration
function satisfies

αP (r) ≤ Ce−2
√
λr, r > 0,

This general observation is due to Gromov and Milman [G-M] (and Borovkov and
Utev [B-U] for dimension n = 1). See also later [A-S,L2,L3]. The fact that the
constant 2 in the exponent is optimal was emphasized in [Bob3].

By the assumption of the theorem, this result may be applied to the product
measure P = μn. Hence, by Lemma 7.3,

αQ(r) ≤ C exp
{
− 2n1/max(p,2)

√
λ r

}
, r > 0.

Equivalently (up to an absolute constant C > 0), for any function u : Zp(R) → R

with Lipschitz seminorm ‖u‖Lip ≤ 1 with respect to the metric Wp, for every r > 0,

Q

{∣∣∣∣u−
∫
Zp(R)

u dQ

∣∣∣∣ ≥ r

}
≤ C exp

{
− 2n1/max(p,2)

√
λ r

}
.

In particular, one may apply this inequality to the distance function u(ν)=Wp(ν, μ),
and then we arrive at the desired conclusion. Theorem 7.1 is established. �

Corollary 7.4. Under the assumptions of Theorem 7.1,[
E

(
W p

p (μn, μ)
)]1/p ≤ E

(
Wp(μn, μ)

)
+

Cp

n1/max(p,2)
√
λ

where C > 0 is an absolute constant.

Indeed, for the random variable ξ = 2n1/max(p,2)
√
λ Wp(μn, μ), the bound of

Theorem 7.1 may be rewritten as

P
{∣∣ξ − E(ξ)

∣∣ ≥ r
}

≤ Ce−r, r > 0,

which implies E(|ξ − Eξ|p) ≤ CΓ(p+ 1) and so
[
E(ξp)

]1/p ≤ E(ξ) + C1/p p.

For the range 1 ≤ p ≤ 2, the inequality of Corollary 7.4 takes the form[
E

(
W p

p (μn, μ)
)]1/p ≤ E

(
Wp(μn, μ)

)
+

C√
λn
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with some absolute constant C > 0. On the other hand, by Theorem 3.1,

E
(
Wp(μn, μ)

)
≥ E

(
W1(μn, μ)

)
≥ 1√

8n
E

(
|X −m|

)
,

where m is a median of X1. Combining the two inequalities yields the following
conclusion. While it appears as a certain extension of Theorem 6.9 in the log-
concave case, the constant involved in the result depends on the distribution μ.

Corollary 7.5 (Moment equivalence for Wp(μn, μ), 1 ≤ p ≤ 2). Under the
assumptions of Theorem 7.1, for any 1 ≤ p ≤ 2,[

E
(
W p

p (μn, μ)
)]1/p ≤ C E

(
Wp(μn, μ)

)
where C > 0 is a constant depending on the product

√
λ E(|X1 −m|).

A similar conclusion may also be made on the basis of Corollary 7.4 for p > 2,
provided that

lim
n→∞

nE
(
W p

p (μn, μ)
)
= ∞.

That is, in this case
[
E(W p

p (μn, μ))
]1/p

and E(Wp(μn, μ)) have similar rates.

Remark 7.6. In Theorem 7.1, sharper deviation inequalities may be obtained
under stronger hypotheses on μ (using Lemma 7.3 or its functional form). For
example, starting from a logarithmic Sobolev inequality

ρ

[ ∫
R

u2 log2 dμ−
∫
R

u2 dμ log

∫
R

u2 dμ

]
≤ 2

∫
R

u′(x)2 dμ(x)

with a constant ρ > 0, we obtain that, for any p ≥ 1 and r > 0,

P

{ ∣∣Wp(μn, μ)− E
(
Wp(μn, μ)

)∣∣ ≥ r
}

≤ 2 exp
{
− ρ n2/max(p,2)r2/2

}
.

In particular, for 1 ≤ p ≤ 2, the right-hand side is independent of p, since then

P

{ ∣∣Wp(μn, μ)− E
(
Wp(μn, μ)

)∣∣ ≥ r
}

≤ 2 exp
{
− ρ nr2/2

}
.

We refer to [L2,L3] for more on logarithmic Sobolev inequalities and their appli-
cations to concentration inqualities.

7.2. Upper-bounds in terms of modulus of continuity

Let μ be a probability measure on R with distribution function F , and let μn,
n ≥ 1, be the associated empirical measures based on a sample from μ. In addition
to the functional Jp from (5.1) which is responsible for the standard rate, another
general upper-bound on E(W p

p (μn, μ)) can be obtained by involving the modulus
of continuity of the inverse function,

δF−1(ε) = sup
{∣∣F−1(t)− F−1(s)

∣∣ : |t− s| ≤ ε, t, s ∈ (0, 1)
}
, 0 < ε ≤ 1,

or equivalently by involving the modulus of increase of F .
We refer to Appendix A, Section A.3, for an account on this modulus of continu-

ity of the inverse function. In particular, recall that according to Proposition A.12
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there, for the property δF−1(ε) < ∞, μ has to be compactly supported, and more-
over, for δF−1(0+) = 0 we need to assume that the function F−1 is continuous.
The latter means that the support of μ should be a finite closed interval.

Theorem 7.7 (Upper-bounds in terms of modulus of continuity). Suppose that
the support of μ is a finite closed interval. Then, for all p ≥ 1, and all n ≥ 1,[

E
(
W p

p (μn, μ)
)]1/p ≤ C

√
p δF−1

( 1√
n

)
with some numerical constant C > 0.

Proof. Put δ(ε) = δF−1(ε). We have E(W p
p (μn, μ)) ≤ E(W p

p (μn, νn)), where
νn is an independent copy of μ. To bound the last expectation, using Theorem 4.6,
write

E
(
W p

p (μn, νn)
)

=

∫ 1

0

∫ 1

0

∣∣F−1(t)− F−1(s)
∣∣p dBn(t, s)

≤
∫ 1

0

∫ 1

0

δ
(
|t− s|

)p
dBn(t, s),

where Bn is the mean square beta distribution of order n (cf. Appendix B, Sec-
tion B.6). If (X,Y ) is a random vector, distributed according to Bn, and
ξ = |X − Y |, we thus have

E
(
W p

p (μn, νn)
)
≤ E

(
δ(ξ)p

)
.

Denote by R the distribution function of ξ and write

E
(
δp(ξ)

)
=

∫ 1

0

δp(ε) dR(ε)

≤ δp(1/
√
n) R(1/

√
n) +

∫ 1

1/
√
n

δp(ε) dR(ε)

≤ δp(1/
√
n) +

∫ √
n

1

δp(x/
√
n) dR(x/

√
n),

where we made the substitution ε = x/
√
n.

As any other modulus of continuity, δ is subadditive in the sense that whenever

εi ≥ 0,
∑N

i=1 εi ≤ 1, then

δ

( N∑
i=1

εi

)
≤

N∑
i=1

δ(εi).

In particular, δ(Nε) ≤ Nδ(ε), and therefore δ(xε) ≤ ([x] + 1) δ(ε) ≤ 2xδ(ε) for any
real x ≥ 1 (xε ≤ 1). Hence, using this bound in the latter integral, we get

E
(
δp(ξ)

)
≤ δp(1/

√
n) + 2p δp(1/

√
n)

∫ √
n

1

xp dR(x/
√
n).

Now, by the subgaussian bound of Proposition B.12, for all ε ≥ 0,

1−R(ε) = P{ξ ≥ ε} ≤ 2e−nε2/16.
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Integrating by parts, we then obtain that∫ √
n

1

xp dR(x/
√
n) =

(
1−R(1/

√
n)

)
+

∫ √
n

1

(
1−R(x/

√
n)

)
dxp

≤ 1 + 2

∫ ∞

0

e−x2/16 dxp

≤
(
C
√
p

)p
with some constant C > 0. The proof is complete. �

Theorem 7.7 includes Theorem 4.9 in the case of the uniform distribution which
we considered with different tools. Here is a somewhat general situation (cf. Ap-
pendix A, Example A.14).

Corollary 7.8. If μ is unimodal, symmetric about the point 1
2 , with support

[0, 1], then for all p ≥ 1,[
E

(
W p

p (μn, μ)
)]1/p ≤ C

√
p F−1

( 1√
n

)
with some numerical constant C > 0.

As an example of a different type, let μ be a discrete probability measure on
(0, 1), for which F−1 represents the Cantor stairs. As discussed in Section A.3 from

Appendix A, in this case δF−1(ε) ≤ (4ε)
log 2
log 3 . Hence,[

E
(
W p

p (μn, μ)
)]1/p ≤

C
√
p

nα/2

where α = log 2
log 3 = 0.6309... . When p < log 3

log 2 , it asymptotically improves upon the

general bound (EW p
p (μn, μ))

1/p ≤ n−1/2p for probability distributions on [0, 1] (to
which we return in the next section).

7.3. Two-sided bounds of order n−1/(2p)

Consider the situation when μ is supported on a finite interval, say [0, 1]. In
this case,

J1(μ) =

∫ 1

0

√
F (x)(1− F (x)) dx ≤ 1

2

so that, by Theorem 3.2, for every n ≥ 1,

E
(
W1(μn, μ)

)
≤ 1

2
√
n

which provides the best possible rate. Actually, this bound allows one to control
the transport distances Wp(μn, μ) for p > 1. Indeed, by the very definition for the
setting of an abstract metric space (E, d) with finite diameter D = diam(E), for all
Borel probability measures ν1 and ν2,

W p
p (ν1, ν2) ≤ Dp−1 W1(ν1, ν2)

for any p ≥ 1. This simple relation leads to a universal upper-bound for the means
of W p

p (μn, μ).
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Theorem 7.9. For any probability measure μ supported on [0, 1], and any p ≥ 1
and n ≥ 1,

E
(
W p

p (μn, μ)
)
≤ 1

2
√
n
.

In particular, E(Wp(μn, μ)) ≤ n−1/(2p).

In fact, both estimates cannot be improved asymptotically with respect to n
uniformly in the whole class of probability measures on [0, 1] as shown by the
following example.

Example 7.10. Let μ = 1
2 δ1 + 1

2 δ0 be the symmetric Bernoulli measure on
{0, 1}. In this case

μn = aδ1 + (1− a)δ0, a =
Sn

n
,

where Sn = X1 + · · ·+Xn is the number of successes in n independent trials with
probability 1

2 of success in each trial. By Example 2.2, for any p ≥ 1,

W p
p (μn, μ) = W1(μn, μ) =

∣∣∣∣Sn

n
− 1

2

∣∣∣∣.
Therefore, in terms of the independent random variables εk = 2Xk−1, k = 1, . . . , n,
taking the values ±1 with probability 1

2 ,

E
(
Wp(μn, μ)

)
= 2−1/p n−1/(2p) E

(
|Zn|1/p

)
where Zn = 1√

n

∑n
k=1 εk. Since, by the central limit theorem,

P
{
|Zn| ≥ 1

}
→ P

{
|Z| ≥ 1

}
with Z ∼ N(0, 1), we have P{|Zn| ≥ 1} ≥ 2c for all n ≥ 1 with some absolute
constant c > 0. But, for all p ≥ 1,

E
(
|Zn|1/p

)
≥ P

{
|Zn| ≥ 1

}
,

so that

E
(
Wp(μn, μ)

)
≥ 2c 2−1/p n−1/(2p) ≥ c n−1/(2p)

showing therefore that the upper-bound in Theorem 7.9 may not be improved.
This example also shows that

E
(
W∞(μn, μ)

)
≥ c > 0, n ≥ 1.

Therefore, there is no convergence of the empirical measures μn with respect to the
W∞ transport distance.

In order to judge the sharpness of the bound of Theorem 7.9, we clarify here the
role of the connectedness of the support of the measure (which means the continuity
of the inverse distribution function).

Theorem 7.11. If the support of a probability distribution μ on R is not an
interval, then for any p ≥ 1, and any n ≥ 1,

E
(
Wp(μn, μ)

)
≥ c

n1/2p

with some positive constant c depending on μ and p, only.
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For example, if μ is the uniform measure on the set Δ = (−2,−1)∪ (1, 2), then
E(Wp(μn, μ)) ≥ c

n1/2p with some positive constant c = cp.

As a result, we obtain a wide class of measures for which the rate is completely
determined.

Corollary 7.12 (Two-sided bounds of order n−1/(2p)). If the support of a
compactly supported probability distribution μ is not an interval, then for any p ≥ 1,
and any n ≥ 1,

c0
n1/2p

≤ E
(
Wp(μn, μ)

)
≤

[
E

(
W p

p (μn, μ)
)]1/p ≤ c1

n1/2p

with some positive constants c0 and c1 depending on μ and p, only.

Proof of Theorem 7.11. The support Δ = supp(μ) is a closed subset of the real
line, consisting of all points x ∈ R such that μ(A) > 0 for any open set A ⊂ R

containing x. Let a = inf Δ, b = supΔ, −∞ ≤ a < b ≤ ∞. If Δ is not an interval
with endpoints a and b, there is a proper interval (a0, b0) ⊂ Δ of μ-measure zero,
with a < a0 < b0 < b. In that case, the intervals Δ0 = [a, a0] and Δ1 = [b0, b] have
positive μ-measures, say q and 1− q, respectively.

When picking a point x at random according to μ, it will belong to Δ0 and Δ1

with probabilities q and 1 − q, respectively. Therefore, if Sn denotes the number
of points in the sample X1, . . . , Xn which belong to Δ0, then Sn has a binomial
distribution with parameters (n, q). Let S′

n denote the number of points in Δ0

for an independent sample Y1, . . . , Yn drawn from μ. By the definition of order
statistics, with probability one

Sn ≥ k ⇐⇒ X∗
k ≤ a0 and S′

n < k ⇐⇒ Y ∗
k ≥ b0.

Hence, for the corresponding empirical measures μn and νn we obtain that

W p
p (μn, νn) =

1

n

n∑
k=1

|X∗
k − Y ∗

k |p

≥ 1

n

∑
min(Sn,S′

n)<k≤max(Sn,S′
n)

|X∗
k − Y ∗

k |p ≥ (b0 − a0)
p

n
|Sn − S′

n|.

Therefore, by the triangle inequality,

Wp(μn, μ) +Wp(νn, μ) ≥ Wp(μn, νn) ≥ b0 − a0
n1/p

|Sn − S′
n|1/p,

so that

E
(
Wp(μn, μ)

)
≥ b0 − a0

2n1/p
E

(
|Sn − S′

n|1/p
)
.

But in case of the binomial distribution, Lλ-norms

‖Sn − S′
n‖λ =

[
E

(
|Sn − S′

n|λ
)]1/λ

, λ > 0

are equivalent to each other within factors depending on λ, only. This follows,
for example, from a dimension free concentration inequality for convex Lipschitz
functions on Rn under product measures on [−1, 1]n, cf. [L3]. In particular,

‖Sn − S′
n‖1/p ≥ c ‖Sn − S′

n‖2 = c
√
2nq(1− q)
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with some c > 0 depending on p and q, only. Therefore,

E
(
Wp(μn, μ)

)
≥ b0 − a0

2n1/p

(
c
√
2nq(1− q)

)p
.

Theorem 7.11 is therefore established. �

7.4. General upper-bounds on E(W p
p (μ, ν))

Since, as we have seen, the rate [E(W p
p (μn, μ))]

1/p = O( 1√
n
) requires that μ

possess rather strong properties, one may ask whether or not one can obtain weaker
reasonable rates under weaker standard assumptions such as moments conditions.
For example, compactness of the support of μ is a sufficient condition (cf. Corol-
lary 7.12). Our next purpose is to extend this observation to larger families of
probability distributions, including those that have appropriate finite moments. To
this end, it is necessary to reach working estimates on Wp(μ, ν) which would be
explicit in terms of the associated distribution functions of μ and ν. For example,
one can use the following general bound.

Lemma 7.13. Let ϕ, ψ : R → R be continuous functions such that ϕ is non-
negative, ψ is non-decreasing, and, for all x, y ∈ R,

ϕ(x− y) ≤
∣∣ψ(x)− ψ(y)

∣∣.
Then, for any distribution functions F and G,∫ 1

0

ϕ
(
F−1(t)−G−1(t)

)
dt ≤

∫ ∞

−∞

∣∣F (x)−G(x)
∣∣ dψ(x).

Proof. One may assume that ψ is strictly increasing and that ψ(−∞) = −∞,
ψ(∞) = ∞ (since otherwise one may apply the result to ψε(x) = ψ(x) + εx with
ε ↓ 0). In that case, introduce the inverse function ψ−1 : R → R and the new
distribution functions

F̃ (x) = F
(
ψ−1(x)

)
, G̃(x) = G

(
ψ−1(x)

)
.

By the assumption on ϕ, ψ and using Theorem 2.10 with p = 1,∫ 1

0

ϕ
(
F−1(t)−G−1(t)

)
dt ≤

∫ 1

0

∣∣ψ(
F−1(t)

)
− ψ

(
G−1(t)

)∣∣ dt
=

∫ 1

0

∣∣F̃−1(t)− G̃−1(t)
∣∣ dt =

∫ ∞

−∞

∣∣F̃ (x)− G̃(x)
∣∣ dx.

Changing the variable x = ψ(y),∫ ∞

−∞

∣∣F̃ (x)− G̃(x)
∣∣ dx =

∫ ∞

−∞

∣∣F (y)−G(y)
∣∣ dψ(y)

and the lemma is proved. �

Under certain restrictions on ϕ, ψ, F,G, inequalities such as in Lemma 7.13
were introduced by Ebralidze, and the above proof is based on his simple argument
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(cf. [Eb]). Later, Borisov and Shadrin generalized Ebralidze-type inequalities to
the form ∫ 1

0

ϕ
(
F−1(t)−G−1(t)

)
dt ≤ C

∫ ∞

−∞

∣∣F (x)−G(x)
∣∣ ∣∣dϕ(x)∣∣

with C = |A−B|+B, assuming that ϕ is a non-negative, continuous, even function
on R, which is non-decreasing for x > 0 and satisfying

ϕ(x+ y) ≤ A
(
ϕ(x) + ϕ(y)

)
, ϕ(x− y) ≤ B

∣∣ϕ(x)− ϕ(y)
∣∣

for all x, y ≥ 0 (see also Theorem 1, [B-S]). This result is included in Lemma 7.13
by applying it with

ψ(x) = C ′ sign(x)ϕ(x),

where C ′ = max(A,B) is even slightly better in case B > A.
If additionally ϕ is convex, then B = 1 (which is best possible) and necessarily

A ≥ 1, so that C ′ = C = A. As emphasized in [B-S], in the important case
ϕ(x) = |x|p, p ≥ 1, we have A = 2p−1. Hence, using Theorem 2.10, we reach the
following statement.

Proposition 7.14. Let μ and ν be probability measures on R with distribution
functions F and G respectively. For all p ≥ 1,

(7.2) W p
p (μ, ν) ≤ p 2p−1

∫ ∞

−∞
|x|p−1

∣∣F (x)−G(x)
∣∣dx.

In particular,

W 2
2 (μ, ν) ≤ 4

∫ ∞

−∞
|x|

∣∣F (x)−G(x)
∣∣ dx.

Remark 7.15. Another way to obtain similar bounds is to connect the Kan-
torovich distances with the Zolotarev so-called ideal metrics. In one partial case, it
is defined by

ζ2(μ, ν) = sup
‖u′‖Lip≤1

∣∣∣∣ ∫ ∞

−∞
u dμ −

∫ ∞

−∞
u dν

∣∣∣∣
where the supremum is taken over all continuously differentiable functions
u : R → R whose derivative u′ has Lipschitz semi-norm ‖u′‖Lip ≤ 1. The quantity

ζ2(μ, ν) is called the Zolotarev ideal metric of order 2.
It is easy to see that ζ2(μ, ν) < ∞ if μ and ν have finite second moments and

equal first moments, that is,
∫ ∞
−∞ x dμ(x) =

∫ ∞
−∞ x dν(x). However, ζ2(μ, ν) = ∞ if

the first moments are different. Restricting ζ2 to the class of probability measures
on the real line with a fixed first moment (and bounded p-th moments, p > 2), it
represents a metric generating the topology of weak convergence. So, it is still of
weak type like Wp.

Recall from Theorem 2.5 that there is a similar representation for W1, namely

W1(μ, ν) = sup
‖u‖Lip≤1

∣∣∣∣ ∫ ∞

−∞
u dμ −

∫ ∞

−∞
u dν

∣∣∣∣
where, however, the supremum is taken over all u : R → R with ‖u‖Lip ≤ 1. As for

W2, there is the following relation proved by Rio [Ri]: For all probability measures
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μ and ν on the real line with finite second moments,

W 2
2 (μ, ν) ≤ 4 ζ2(μ, ν)

(in fact, Rio considered more general distances Wp and ζp). On the other hand,
the Zolotarev metric of order 2 admits an equivalent representation

ζ2(μ, ν) =

∫ ∞

−∞

∣∣∣∣ ∫ x

−∞

(
F (y)−G(y)

)
dy

∣∣∣∣ dx,
valid when μ and ν have equal first moments. This identity is elementary and may
be found in [Z]. It can be used to show that without the first moment restriction

W 2
2 (μ, ν) ≤ 8

∫ ∞

−∞
|x|

∣∣F (x)−G(x)
∣∣dx

+ 8
∣∣E(X)− E(Y )

∣∣ E(
|X|

)
+ 6

(
E(X)− E(Y )

)2
,

where X and Y are random variables with respective laws μ and ν and distributions
functions F and G, having finite second moments. The last bound is not as sharp as
the (second) bound of Proposition 7.14, although both lead to similar conclusions
when applying them to the empirical measures.

7.5. Moment upper-bounds of order n−1/2 on E(W p
p (μn, μ))

Proposition 7.14 of the preceding paragraph may now be used towards upper-
bounds of order n−1/2 on E(W p

p (μn, μ)). Let thus X1, . . . , Xn be a sample drawn
from a Borel probability μ on R with distribution function F . We are in position
to apply Proposition 7.14 to the couple (μn, μ), where μn is the empirical measure
of the sample. As a result, we arrive at the following extension of Theorem 3.2.

Theorem 7.16. Let p ≥ 1. In the preceding notation, for all n ≥ 1,

(7.3) E
(
W p

p (μn, μ)
)
≤ p 2p−1

√
n

∫ ∞

−∞
|x|p−1

√
F (x)(1− F (x) dx.

In particular,

E
(
W 2

2 (μn, μ)
)
≤ 4√

n

∫ ∞

−∞
|x|

√
F (x)(1− F (x) dx.

The finiteness of the integral in (7.3) is equivalent to saying that the random
variable |X|p (where X has law μ) belongs to the Lorentz Banach space L2,1,
cf. (3.4). It is so in particular if X belongs to Ls for some s > 2p. Indeed, if
E(|X|s) < ∞, then F (x)(1− F (x)) = O(|x|−s) as |x| → ∞, so that∫ ∞

−∞
|x|p−1

√
F (x)(1− F (x) dx < ∞

as long as s > 2p.
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Corollary 7.17 (Upper-bound on E(W p
p (μn, μ)) under moment conditions).

Let p ≥ 1. If E(|X|s) < ∞ for some s > 2p, then

E
(
W p

p (μn, μ)
)
= O

(
1√
n

)
as n → ∞.

The expression E(|Fn(x) − F (x)|) may be bounded from above in a sharper
way, since, as in the proof of Theorem 3.5, for each n ≥ 1,

E
(∣∣Fn(x)− F (x)

∣∣) ≤ 1

n
min

{
2nF (x)

(
1− F (x)

)
,
√
nF (x)(1− F (x))

}
.

Using this in the general bound (7.2), the inequality (7.3) of Theorem 7.16 may be
sharpened to

E
(
W p

p (μn, μ)
)
≤ p 2p

∫
{4nF (x)(1−F (x))≤1}

|x|p−1 F (x)
(
1− F (x)

)
dx

+
p 2p−1

√
n

∫
{4nF (x)(1−F (x))>1}

|x|p−1
√
F (x)(1− F (x)) dx.

(7.4)

This estimate is applicable for arbitrary probability measures μ on R with
finite moment of order p, although it might lead to weaker rates for E(W p

p (μn, μ))
in comparison with Corollary 7.17 with its moment condition.

For example, if we know that c = E(|X|2p) < ∞, then, by Chebyshev’s inequal-
ity,

F (x)(1− F (x)) ≤ 1 + c

1 + |x|2p , x ≥ 0.

Hence, the second integral in (7.4) is bounded by

√
1 + c

∫
{|x|2p<4n(1+c)−1}

|x|p−1√
1 + |x|2p

dx = O
(
log n

)
.

In order to bound the first integral in (7.4), let u(t) = F−1(t) so that

c =

∫ 1

0

|u(t)|2p dt.

Here, the region of integration is contained in the set min{F (x), 1 − F (x)} ≤ 1
8n

which is part of (−∞, rn] ∩ [rn,∞) for some rn → ∞. Integrating by parts and
using the Cauchy-Schwarz inequality, we have, for all n large enough,

p

∫
{1−F (x)≤ 1

8n}
xp−1

(
1− F (x)

)
dx ≤

∫
{1−F (x)≤ 1

8n}
xp dF (x)

=

∫ 1

1− 1
8n

u(t)p dt ≤
√
c√
8n

.

A similar bound also holds for the integral of |x|p−1 F (x) over the part {F (x) ≤ 1
8n}.

We may therefore conclude to the following statement.

Corollary 7.18. If E(|X|2p) < ∞, then

E
(
W p

p (μn, μ)
)
= O

(
log n√

n

)
as n → ∞.
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Analogues of Corollaries 7.17 and 7.18 for samples of vector-valued random
variables have been achieved recently in [D-S-S] and [FG15] by coupling methods.

7.6. W∞-convergence of empirical distributions

We conclude this chapter with the issue of the convergence of μn to μ with
respect to the W∞ distance, in the mean or with probability one (analogously to
the Glivenko-Cantelli theorem). The standard rate inW∞ distance was investigated
in Section 5.6. We complete the study here with the following characterization.

Theorem 7.19 (Characterization of convergence of W∞(μn, μ)). Each of the
following three statements

a) W∞(μn, μ) → 0 as n → ∞ with probability one,

b) W∞(μn, μ) → 0 as n → ∞ in probability,

c) E(W∞(μn, μ)) → 0 as n → ∞

is equivalent to the property that the support of μ is a finite closed interval.

Proof. First recall the formula

W∞(μn, μ) = sup
0<t<1

∣∣F−1
n (t)− F−1(t)

∣∣,
where F is the distribution function of the sample, and Fn is the empirical distri-
bution function. In particular, this distance is finite, if and anly if μ is compactly
supported. The latter property is thus necessary for each of the three statements.

Hence, one may assume that μ is supported on an interval with finite length �.
But then W∞(μn, μ) ≤ � with probability one, and therefore a) ⇒ b) ⇒ c), by the
Lebesgue dominated convergence theorem for the last implication.

Let us now derive from c) the conclusion about the connectedness of the sup-
port. Due to the triangle inequality for W∞, this hypothesis implies that

lim
n→∞

E
(
W∞(μn, νn)

)
= 0,

where νn is an independent copy of μn. We employ the second lower-bound of
Theorem 5.7, namely[
E

(
Wp(μn, νn)

)]p ≥ cp
∫
{t(1−t)≥ 4√

n+1
}

[
F−1

(
t+

1

6
εn(t)

)
−F−1

(
t− 1

6
εn(t)

)]p

dt.

Here εn(t) =
√

t(1−t)
n+1 , p ≥ 1, and c is a positive numerical constant. Raising both

sides of this bound to the power 1/p and letting p → ∞, we get in the limit

E
(
W∞(μn, νn)

)
≥ c sup

t(1−t)> 4√
n+1

[
F−1

(
t+

1

6
εn(t)

)
− F−1

(
t− 1

6
εn(t)

)]
.

Hence, for any fixed t0 ∈ (0, 1
2 ) and for all sufficiently large n so that

t0(1− t0) >
4√
n+1

, we have

E
(
W∞(μn, νn)

)
≥ c

[
F−1

(
t+

1

6
εn(t0)

)
− F−1

(
t− 1

6
εn(t0)

)]
,



80 7. MISCELLANEOUS BOUNDS AND RESULTS

whenever t0 ≤ t ≤ 1− t0. Letting now n → ∞, we get

lim
n→∞

[
F−1

(
t+

1

6
εn(t0)

)
− F−1

(
t− 1

6
εn(t0)

)]
= 0.

But this means that the inverse function F−1 is continuous on (t0, 1 − t0), and
therefore it is continuous on the whole unit interval (0, 1). The latter is equivalent
to the connectedness of the support (cf. Proposition A.7).

It remains to derive the statement a) from the property supp(μ) = [a, b]. In
that case, the inverse function F−1 : [0, 1] → [a, b] is continuous, and hence its
modulus of continuity is vanishing at zero, δF−1(0+) = 0.

Again, let νn be an independent copy of μn constructed for the first n values in
the sample (Yn)n≥1, and let (X∗

k)1≤k≤n and (Y ∗
k )1≤k≤n be the corresponding order

statistics. Since, by the convexity of the distance,

W∞(μn, μ) ≤ EY

(
W∞(μn, νn)

)
,

and since W∞ ≤ b − a, it will be sufficient to see that W∞(μn, νn) → 0 a.s. as
n → ∞. We now employ another formula, given in Lemma 4.2, namely

W∞(μn, νn) = max
1≤k≤n

|X∗
k − Y ∗

k |.

Write X∗
k = F−1(U∗

k ) and Y ∗
k = F−1(V ∗

k ) by using order statistics for two indepen-
dent samples U1, . . . , Un and V1, . . . , Vn drawn from the uniform distribution μ′ on
(0, 1), and denote by μ′

n and ν′n the empirical measures for these samples. Then,

W∞(μn, νn) ≤ max
1≤k≤n

δF−1

(
|U∗

k − V ∗
k |

)
= δF−1

(
max

1≤k≤n
|U∗

k − V ∗
k |

)
= δF−1(W∞(μ′

n, ν
′
n)).

In addition, by the triangle inequality.

W∞(μ′
n, ν

′
n) ≤ W∞(μ′

n, μ
′) +W∞(ν′n, μ

′).

But, as was already emphasized in Section 4.2, in the particular case of the uniform
distribution, with probability one we have

W∞(μ′
n, μ

′) = sup
0<x<1

∣∣μ′
n

(
[0, x]

)
− μ′([0, x])∣∣ = sup

0<x<1

∣∣μ′
n

(
[0, x]

)
− x

∣∣.
These random variables do tend to zero a.s. by the Glivenko-Cantelli theorem.
Similarly, W∞(ν′n, μ

′) → 0 a.s. The theorem is therefore established. �
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APPENDIX A

Inverse distribution functions

Throughout this appendix, μ denotes a probability measure on the Borel sets
of R, with associated distribution function F = μ((−∞, x]), x ∈ R, uniquely deter-
mining μ. The measure μ (or its distribution function F ) is said to be degenerate if
it is a Dirac mass. We sometimes denote by X a random variable on a probability
space (Ω,Σ,P) with distribution (law) μ.

At significant occasions in this work, the study is reduced to the uniform dis-
tribution by means of the inverse function F−1 (cf. Proposition A.1 below). It is
therefore important to freely work with the inverse distribution functions and their
analytic properties. This appendix thus collects material on supports and continu-
ity, modulus of continuity and absolute continuity of inverse distribution functions.
The notion of I-function which plays an important role in this investigation is ad-
dressed in this framework and the study of integrals containing the derivative of
F−1.

A number of results presented in this appendix are classical, although often they
are not always stated in full generality. Some results seem to be new, or we could not
precisely determine suitable references. Among the bibliography pertinent to this
appendix, in particular in connection with empirical measures and processes, let us
mention [S-W,C-H]. In particular, the study of quantile processes undertaken in
these monographs involves similarly inverse distribution functions and associated
I-functions as presented here, usually however under some regularity conditions.

A.1. Inverse distribution functions

Let F be a distribution function on the real line. Recall its inverse function

(A.1) F−1(t) = inf
{
x ∈ R : F (x) ≥ t

}
, 0 < t < 1.

Since F is non-decreasing and continuous from the right, the infimum in the defi-
nition of F−1(t) is always attained at some point, so

F−1(t) = min
{
x ∈ R : F (x) ≥ t

}
, 0 < t < 1.

It is convenient furthermore to extend this function to [0, 1] by monotonicity, setting

F−1(0) = F−1(0−) = inf{x ∈ R : F (x) > 0
}
,

F−1(1) = F−1(1−) = sup{x ∈ R : F (x) < 1
}
,

similarly to the standard convention F (−∞) = 0, F (∞) = 1.
The use of the inverse functions is mainly explained by the following well-known

observation.

83
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Proposition A.1. Let F be a distribution function. If U is a random vari-
able uniformly distributed in (0, 1), then the random variable F−1(U) has F as its
distribution function.

Another related (although less universal) property is that, when a random
variableX has a continuous distribution function F , the random variable U = F (X)
is uniformly distributed in the interval (0, 1).

The next statement describes how the transform F �→ F−1 acts between its
domain and image.

Proposition A.2. Any inverse distribution function is non-decreasing and left-
continuous. Moreover, for any non-decreasing, left-continuous function
G : (0, 1) → R, there exists a unique distribution function F such that F−1 = G.

Thus, when thinking of F in terms of F−1, there should be no constraint on the
latter function except for the property of being non-decreasing and left-continuous.
The next statement lists a number of basic properties and relations between F
and F−1. The various claims are elementary and are verified in a straightforward
manner.

Lemma A.3 (Properties of inverse distribution functions). Given a distribution
function F , the following hold for all 0 < t < s < 1 and x ∈ R.

1) F−1(t) ≤ x if and only if F (x) ≥ t.

2) F−1(t) > x if and only if F (x) < t.

3) F−1(t) ≤ x < F−1(s) if and only if t ≤ F (x) < s.

4) F (F−1(t)) ≥ t with equality if and only if t = F (y) for some y ∈ R. In
particular,

5) F (F−1(t)) = t if F is continuous.

6) F−1(F (x)) ≤ x if and only if x ≥ F−1(0). Moreover,

7) F−1(F (x)) < x if and only if F (y) = F (x) for some y < x (x > F−1(0)).

8) F−1 is strictly increasing on (0, 1) if and only if F is continuous.

Note that Properties 1)-2) also hold for t = 1.
On the basis of this lemma, we address the proofs of Propositions A.1 and A.2.

Proof of Propositions A.1 and A.2. Proposition A.1 is immediate since by
Lemma A.3, for all x ∈ R,

λ
{
t ∈ (0, 1) : F−1(t) ≤ x

}
= λ

{
t ∈ (0, 1) : t ≤ F (x)

}
= F (x)

where λ denotes Lebesgue measure on (0, 1).
Turning to Proposition A.2, assume first that F−1 is not left-continuous at

some point t. That is, setting x = F−1(t), there exists a δ > 0 such that, for all
ε > 0,

F−1(t− ε) ≤ F−1(t)− δ = x− δ.
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By Lemma A.3, this is equivalent to saying that F (x − δ) ≥ t − ε. Letting ε ↓ 0,
we get F (x− δ) ≥ t, which in turn is equivalent to x− δ ≥ F−1(t), a contradiction.
The first assertion of Proposition A.2 is established.

Next turn to the existence part of the second claim. Set G(1) = G(1−) and
define on R the function

F (x) = sup
{
t ∈ (0, 1] : G(t) ≤ x

}
,

using (if necessary) the convention that sup ∅ = 0. In particular, F (x) > 0 if and
only if G(t) ≤ x for some t ∈ (0, 1). By construction, F is non-decreasing and
takes values in [0, 1]. To prove that it is right-continuous, observe the following.
Fix t0 ∈ (0, 1] and x ∈ R. If G(t0) ≤ x, then the set {G(t) ≤ x} is non-empty,
and F (x) ≥ t0. Conversely, if F (x) ≥ t0, then F (x) > 0, so the set {G(t) ≤ x} is
non-empty. Hence, using the left continuity of G,

sup
{
t ∈ (0, 1] : G(t) ≤ x

}
≥ t0 =⇒ ∃ t ≥ t0 , G(t) ≤ x =⇒ G(t0) ≤ x.

Thus, for all t ∈ (0, 1] and x ∈ R,

(A.2) G(t) ≤ x ⇐⇒ t ≤ F (x).

Now, assume that F is not-right continuous at some point x0 and put
t0 = F (x0). Then, there exists δ > 0 such that, for all ε > 0,

F (x0 + ε) ≥ F (x0) + δ = t0 + δ.

In particular, t = t0 + δ ∈ (0, 1]. By (A.2), G(t0 + δ) ≤ x0 + ε. Letting ε ↓ 0,
we are led to G(t0 + δ) ≤ x0, which in turn is equivalent to t0 + δ ≤ F (x0), a
contradiction with t0 = F (x0). The existence of the distribution function F is
therefore established.

We are left with uniqueness. Let F̃ be another distribution function such that

F̃−1 = G. By (A.2) applied to both F and F̃ , for all t ∈ (0, 1] and x ∈ R,

t ≤ F̃ (x) ⇐⇒ t ≤ F (x)

which clearly amounts to F (x) = F̃ (x). The proof of Proposition A.2 is therefore
complete. �

Being non-decreasing and left-continuous, the inverse function F−1 of a given
distribution function F generates a non-negative Borel measure μ−1 on (0, 1), de-
fined for semi-open intervals by

μ−1
(
[t, s)

)
= F−1(s)− F−1(t), 0 < t < s < 1.

It may be called the inverse measure (with respect to the probability measure μ
with the distribution function F ). The next statement describes μ−1 for any Borel
sets.

Proposition A.4 (Inverse measure). Any non-degenerate distribution function
F restricted to the interval Δ = {x ∈ R : 0 < F (x) < 1} pushes forward the
Lebesgue measure λ on Δ onto the inverse measure μ−1. That is, for any Borel set
A ⊂ (0, 1),

λ
{
x ∈ Δ : F (x) ∈ A

}
= μ−1(A).
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It is sufficient to verify this equality for A = [t, s) with arbitrary 0 < t < s < 1
and indeed, by Lemma A.3,

λ
{
x ∈ Δ : t ≤ F (x) < s

}
= λ

{
x ∈ Δ : F−1(t) ≤ x < F−1(s)

}
= μ−1

(
[t, s)

)
.

There are other interesting properties of the transform F �→ F−1 such as the
following one which is equivalent to the so-called “Elementary Skorokhod Theorem”
(cf. [S-W], pp. 9-10). We provide a proof for completeness.

Lemma A.5 (Elementary Skorokhod Theorem). Let (Fn)n∈N
be a sequence of

distribution functions, and assume that Fn → F weakly, i.e. limn→∞ Fn(x) = F (x)
for any point x of continuity of F . Then

lim
n→∞

F−1
n (t) = F−1(t),

for any point t of continuity of F−1.

Proof. Let t be a point of continuity of F−1 and let T ⊂ R be the set of all
continuity points of all Fn’s (which is dense on the real line). We first show that,
given ε > 0, F−1

n (t) ≤ F−1(t) + ε for all n large enough. By Lemma A.3, this is
equivalent to Fn(F

−1(t) + ε) ≥ t. Choose x ∈ T such that

F−1(t) + ε > x > F−1(t) +
ε

2
.

Then Fn(x) ≥ F (F−1(t)+ ε
2 )− δ, for all n large enough with any prescribed δ > 0.

Hence, it suffices to prove that F (F−1(t) + ε
2 ) ≥ t + δ. But if 0 < δ < 1 − t,

the latter is equivalent to F−1(t) + ε
2 ≥ F−1(t + δ). An appropriate value of δ

can be then chosen once F−1 is continuous at the point t. By a similar argument,
F−1
n (t) > F−1(t) − ε for all n large enough, concluding therefore the proof of the

lemma. �

The preceding Lemma A.5 may be used, for example, to justify the identity in
Theorem 2.10,

W p
p (μ, ν) =

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣p dt

where F and G are the distribution functions associated with the probability mea-
sures μ and ν from the space Zp(R). Indeed, if these measures are supported on n
distinct points with mass 1

n , the above identity is reduced to Lemma 4.2 (based on
the elementary Lemma 4.1). In the general case, one can approximate μ and ν by
such discrete measures μn and νn in the metric Wp. If Fn, F , and Gn, G are the
associated distribution functions, then necessarily Fn → F and Gn → G weakly.
Hence, by Lemma A.5 and Fatou’s lemma,∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣p dt ≤ lim inf

n→∞

∫ 1

0

∣∣F−1
n (t)−G−1

n (t)
∣∣p dt

= lim inf
n→∞

W p
p (μn, νn)

= W p
p (μ, ν).

On the other hand, the joint distribution F−1 of G−1 under the Lebesgue measure
on (0, 1) has μ and ν as marginals. Hence, by Definition 2.1, there is an opposite
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inequality

W p
p (μ, ν) ≤

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣p dt.

A.2. Supports and continuity

In this paragraph, we comment on issues connected with the support of mea-
sures. Given a distribution function F on R and its inverse function F−1, observe
first that [F−1(0), F−1(1)] represents the smallest closed interval in [−∞,∞] on
which the measure μ with the distribution function F is supported. In general, the
support supp(μ) is defined as the smallest closed subset of the real line R of full
μ-measure. This set can be defined as the collection of all points x of growth of F ,
i.e. such that F (x+ ε) > F (x− ε) for every ε > 0.

A similar definition is applied to a general Borel measure generated by a non-
decreasing function on a given interval, and in particular to the inverse measure
μ−1 on (0, 1) generated by the inverse distribution function F−1. Its support, i.e.
the smallest closed subset of (0, 1) of full μ−1-measure, is described in terms of the
image set

Im(F ) =
{
F (x) : −∞ ≤ x ≤ ∞

}
.

As an equivalent definition, one may involve the inverse function to write the rep-
resentation

(A.3) Im(F ) ∩ (0, 1) =
{
t ∈ (0, 1) : F−1(t) < F−1(s) for all s ∈ (t, 1)

}
.

Indeed, using Lemma A.3, we have

F−1(t) < F−1(s) ⇐⇒ ∃x ∈ R, F−1(t) ≤ x < F−1(s)

⇐⇒ ∃x ∈ R, t ≤ F (x) < s.

By the continuity of F from the right, the latter property holds true for all s ∈ (t, 1)
if and only if t = F (x) for some x ∈ R, thus proving the claim.

By Proposition A.4, since F : R → Im(F ), the measure μ−1 is supported on
Im(F ) (once we realize that the image set is Borel measurable). This set does not
need be closed, but its closure is just

clos(Im(F )) = Im(F ) ∪
{
F (x−) : x ∈ R

}
.

Proposition A.6 (Support of the inverse measure). Let μ be a probability
measure on R with distribution function F . A number t ∈ (0, 1) is a point of
growth of F−1 if and only if t = F (x) or t = F (x−) for some x ∈ R. Equivalently,

supp(μ−1) = clos
(
Im(F )

)
∩ (0, 1).

Proof. The support of μ−1, supp(μ−1), represents the collection of all points t
of growth of F−1 on (0, 1), i.e. such that F−1(t0) < F−1(t1) whenever
0 < t0 < t < t1 < 1. Using Lemma A.3 and arguing as before, we have

F−1(t0) < F−1(t1) ⇐⇒ ∃x ∈ R, F−1(t0) ≤ x < F−1(t1)

⇐⇒ ∃x ∈ R, t0 ≤ F (x) < t1

⇐⇒ [t0, t1) ∩ Im(F ) 
= ∅.
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Hence, t is a point of growth of F−1, if and only if [t0, t1) ∩ Im(F ) 
= ∅ for
all t0, t1 such that t0 < t < t1. But the latter is equivalent to the property
t ∈ clos(Im(F )). �

Next, we comment more on the structure of the image set Im(F ). If the measure
μ with distribution function F is non-atomic (F is continuous), then Im(F ) = [0, 1],
and F−1 is strictly increasing. In the general case, let us return to the representation
(A.3) and consider the complement of the image in (0, 1),

A = (0, 1) \ Im(F ) =
{
t ∈ (0, 1) : F−1(t) = F−1(s) for some s ∈ (t, 1)

}
.

With every point t in A, this set also contains some non-empty interval [t, s). For a
rational number r ∈ (0, 1), denote by er the union of all such intervals that contain
r. Clearly, if er is non-empty, it is an interval either of type [a, b) or (a, b). Thus,
A =

⋃
r er, which shows in particular that Im(F ) is always Borel measurable.

The following proposition collects conditions insuring the continuity of the in-
verse distribution functions in terms of the support of the measure.

Proposition A.7 (Continuity and support). Let μ be a probability measure on
R with distribution function F . The following properties are equivalent:

a) The function F is strictly increasing on the interval Δ0 =
{x ∈ R : 0 < F (x) < 1};

b) The inverse function F−1 is continuous;
c) The inverse measure μ−1 is non-atomic;
d) The support of μ is a closed interval on the real line, finite or not.

Thus, for the continuity of F−1, the support Δ = supp(μ) should be one of the
following types

1) Δ = (−∞,∞), 2) Δ = (−∞, b], 3) Δ = [a,∞), 4) Δ = [a, b]

with some finite a, b. Then, in the corresponding cases

1) Δ0 = (−∞,∞), 2) Δ0 = (−∞, b),

3) Δ0 = [a,∞) or (a,∞), 4) Δ0 = [a, b) or (a, b)

(in the two last cases depending on whether μ has an atom at the point a). Anyhow,
all points of Δ will be points of growth of F . In particular, according to Lemma A.3,
F−1(F (x)) = x for every x ∈ Δ.

Proof. The equivalence of b) and c) is standard. For b) ⇒ a), assume by
contradiction that F is not strictly increasing on Δ0, that is, t = F (y) = F (x) for
some y < x with 0 < t < 1. Let y be the smallest number satisfying this equality
with fixed x. Then, by Lemma A.3, F−1(t) = y, while F−1(s) > x whenever s > t.
Hence, F−1 is discontinuous at t, thus proving the implication. Conversely, if F−1

is discontinuous at t ∈ (0, 1) and y = F−1(t), then x = F−1(t+) > y. Hence F is
constant on [y, x) proving the implication a) ⇒ b). Finally, assuming a), any point
in Δ0 is a point of growth of F−1. Hence, supp(μ) = clos(Δ0) which implies d). In
turn, d) implies that μ(x− ε, x + ε) > 0 for every x ∈ Δ and ε > 0, and we arrive
at a). The proof is complete. �
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To conclude this paragraph, we illustrate the preceding results with some ex-
amples.

Example A.8. For the mass point μ = δx, x ∈ R (the degenerate case),

F−1(t) = x, 0 < t < 1.

Hence μ−1 = 0.

Example A.9. For the Bernoulli measure μ = pδx+(1−p)δy, x < y, 0 < p < 1,

F−1(t) =

{
x, if 0 < t ≤ p,
y, if p < t < 1.

Hence μ−1 = (y − x)δp which is a multiple of the mass point.

Example A.10. Let λ denote the uniform measure on (0, 1). For a mixture of
the Bernoulli and the uniform measure μ = 1

4 δ0+
1
4 δ1+

1
2 λ, the inverse distribution

function is continuous and is given by

F−1(t) =

{ 0, if 0 < t ≤ 1
4 ,

2t− 1
2 , if 1

4 < t ≤ 3
4 ,

1, if 1
4 ≤ t < 1.

In this case μ−1 represents a multiple of the uniform distribution on [14 ,
3
4 ].

Example A.11. Let X be a discrete random variable taking the values

P

{
X =

2i− 1

2k

}
=

1

3k
, i = 1, 2, . . . , 2k−1, k = 1, 2, . . .

Since the points 2i−1
2k

form a dense subset of [0, 1], the distribution μ of X has

the interval [0, 1] as the support. Hence, the inverse distribution function F−1

is continuous. In fact, F−1 coincides with the classical Cantor’s stairs, so it is
not absolutely continuous (in contrast with the previous example). Note that the
function F−1 is constant on intervals having the total measure 1. This example
also shows that the image Im(F ) may have the continuum cardinality, even if F
corresponds to a discrete distribution.

A.3. Modulus of continuity

Once the inverse function F−1 of a distribution function F is continuous, one
can try to quantify this property by considering its modulus of continuity

δF−1(ε) = sup
{∣∣F−1(t)− F−1(s)

∣∣ : |t− s| ≤ ε, t, s ∈ (0, 1)
}
, 0 < ε ≤ 1,

which is an optimal function δ such that∣∣F−1(t)− F−1(s)
∣∣ ≤ δ

(
|t− s|

)
for all t, s ∈ (0, 1). However, as is made clear by the next statement, the study of
moduli of continuity is restricted to the class of compactly supported measures.
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Proposition A.12. Let μ be a probability measure on R with distribution func-
tion F . The following properties are equivalent:

a) δF−1(ε) < ∞ for some ε ∈ (0, 1);
b) δF−1(ε) < ∞ for all ε ∈ (0, 1);
c) μ is compactly supported.

If μ is supported on an interval of length �, then δF−1 ≤ �. Furthermore, F−1 is
continuous if and only if δF−1(0+) = 0.

The statement is obvious. Let us only stress that μ is not compactly supported
if and only if F−1(0) = −∞ or F−1(1) = ∞. In the latter case, we have δF−1(ε) ≥
F−1(1)− F−1(1− ε) = ∞ for every ε ∈ (0, 1).

If μ is compactly supported, and [a, b] is the smallest segment where μ is sup-
ported, the behaviour of the modulus of continuity δF−1 near zero can be connected
with the dual notion – an analogous “modulus of increase” of the distribution func-
tion F . This function may be defined as

εF (δ) = inf
{
F (y)− F (x) : y − x > δ, x, y ∈ [a, b]

}
= inf

{
F (y)− F (x−) : y − x ≥ δ, x, y ∈ [a, b]

}
for every 0 < δ < b− a.

Proposition A.13. Let F be the distribution function associated with a proba-
bility measure μ such that supp(μ) = [a, b]. Then for all 0 < ε < 1 and 0 < δ < b−a,

δF−1(ε) ≤ δ ⇐⇒ εF (δ) ≥ ε.

In particular,

δF−1(ε) = inf
{
δ ∈ (0, b− a) : εF (δ) ≥ ε

}
.

Proof. The support assumption means that the inverse function F−1 is con-
tinuous on (0, 1) according to Proposition A.7. We may assume that μ is non-
degenerate so that a < b.

By definition, εF (δ) ≥ ε means that s−t ≤ ε ⇒ F−1(s)−F−1(t) ≤ δ whenever
0 < t < s < 1. Since F−1 is continuous, this implication may be rewritten as

s− t < ε =⇒ F−1(s)− F−1(t) ≤ δ.

Moreover, this description will not change if we require additionally that
F−1(t) < F−1(u) < F−1(s) for all u ∈ (t, s). Indeed, otherwise, the interval
(t, s) may be decreased without change of the value F−1(s)−F−1(t). As explained
in the proof of Proposition A.1, such a requirement is equivalent to the property
that [t, u)∩ Im(F ) 
= ∅ and [u, s)∩ Im(F ) 
= ∅, for all t < u < s. But then t = F (x)
and s = F (y−) for some x < y in [a, b], and hence F−1(t) = x. In addition, by the
left-continuity of F−1,

F−1(s) = F−1
(
F (y−)

)
= lim

z↑y
F−1

(
F (z)

)
= y

since F−1(F (z)) = z for all z ∈ [a, b]. Thus, the inequality εF (δ) ≥ ε is reduced to
the statement

F (y)− F (x) < ε =⇒ y − x ≤ δ
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(for a ≤ x < y ≤ b), or equivalently,

y − x > δ =⇒ F (y)− F (x) ≥ ε.

The latter amounts to εF (δ) ≥ ε and hence Proposition A.13 is established. �

As in the preceding paragraph, we conclude with some examples illustrating
these results.

Example A.14. Let a random variable X have a unimodal distribution, sym-
metric about the point 1

2 , with support [0, 1]. The latter means that the distribution

function F of X is convex on [0, 1
2 ] and concave on [ 12 , 1], with the symmetry prop-

erty F (1 − x) = 1 − F (x) for all 0 ≤ x ≤ 1 (for simplicity, let us exclude the case
where F has a jump at the point 1

2 ). Then the probabilities

P{y ≤ X ≤ x} = F (y)− F (x), y − x ≥ δ, x, y ∈ [0, 1],

are minimized for y = 0, x = δ, so εF (δ) = F (δ). Hence,

δF−1(ε) = F−1(ε), for every 0 < ε < 1.

This function is concave on the interval [0, 1
2 ] and convex on [ 12 , 1].

Example A.15. Let us return to the Example A.11 of the previous paragraph
of a discrete random variable X with values in (0, 1) for which F−1 represents
the Cantor stairs. Under the constraints y − x ≥ δ, x, y ∈ [0, 1], consider the
probabilities

P{y ≤ X ≤ x} =
∑

y≤ 2i−1

2k
≤x

1

3k

with allowed values i = 1, 2, . . . , 2k−1, k = 1, 2, . . . Here, for each fixed k the

summation is performed over all positive integers i from the interval [ 1+2ky
2 , 1+2kx

2 ].

If this interval has length �k ≥ 1, it contains at least [�k] = [2k−1(x− y)] ≥ [2k−1δ]
integers. Hence, if 2k−1δ ≥ 1,

∑
i: y≤ 2i−1

2k
≤x

1

3k
≥ [2k−1δ]

3k
≥ 1

2

2k−1δ

3k
=

δ

4

(2

3

)k

.

Putting k0 to be the least integer ≥ 1 + log2
1
δ , this gives

P{y ≤ X ≤ x} ≥
∞∑

k=k0

δ

4

(2

3

)k

=
3δ

4

(2

3

)k0

≥ 3δ

4

(2

3

)2+log2(1/δ)

=
1

3
δ

log 3
log 2 .

As a result, εF (δ) ≥ 1
3 δ

log 3
log 2 and thus δF−1(ε) ≤ (3ε)

log 2
log 3 .
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A.4. Absolute continuity

In this paragraph, we study explicit characterizations of the (potential) absolute
continuity property of the inverse distribution functions. This property will always
be understood in the local sense. Namely, a function u defined on an interval (a, b),
finite or not, will be called absolutely continuous if for all a < a′ < b′ < b and
ε > 0, there exists δ > 0 such that, for any sequence of non-overlapping intervals
(ai, bi) ⊂ [a′, b′], ∑

i

(bi − ai) < δ =⇒
∑
i

∣∣u(bi)− u(ai)
∣∣ < ε.

Equivalently, for some locally integrable function v on (a, b), for all a < t0 < t1 < b,

u(t1)− u(t0) =

∫ t1

t0

v(t) dt.

The function v is uniquely determined up to a set of measure zero, is denoted by
u′, and is called the Radon-Nikodym derivative of u. As a possible variant, one
may put

u′(t) = lim sup
ε→0

u(t+ ε)− u(t)

ε

or use lim inf instead.
For example, any locally Lipschitz function is absolutely continuous. Such

functions have Radon-Nikodym derivatives that are bounded on proper subintervals
of (a, b).

If an absolutely continuous function u is non-decreasing, the Radon-Nikodym
derivative of u can always be chosen to be non-negative and a.e. finite. Any such
u generates a non-negative Borel measure

ν(A) =

∫
A

u′(t) dt, A ⊂ (a, b) Borel,

which is absolutely continuous with respect to the Lebesgue measure on (a, b) in
the usual sense of Measure Theory. We do not require that ν be finite, but ν should
be finite on compact subintervals of (a, b). Note that any non-negative absolutely
continuous measure ν, which is finite on compact subintervals of (a, b), is generated
by some non-decreasing absolutely continuous function u.

Here we consider such properties for the inverse function F−1 on (a, b) = (0, 1).
First let us state one immediate important consequence of the absolute continuity
assumption on F−1.

Proposition A.16. If F is a non-degenerate distribution function such that
F−1 is absolutely continuous, then the image set Im(F ) has a positive Lebesgue
measure.

Proof. The non-degeneracy of F insures that F−1 generates a non-zero in-
verse measure μ−1 where μ is the probability measure associated with F . By the
second assumption, the inverse measure is absolutely continuous with respect to the
Lebesgue measure λ. So, λ(Im(F )) = 0 would imply that μ−1(Im(F )) = 0 which
is impossible since μ−1 is supported on Im(F ). �
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Next, we turn to a full characterization of the absolute continuity of F−1 in
terms of the distribution function F . In general, the measure μ generated by F
admits a unique decomposition μ = μ0 + μ1 + μ2, where μ0 is a discrete measure,
μ1 is a singular continuous measure which is orthogonal to the Lebesgue measure λ
on R, and μ2 is a measure which is absolutely continuous with respect to λ. They
are respectively called the discrete component, the singular continuous component,
and the absolutely continuous component of μ. Furthermore, by the Lebesgue
differentiation theorem, the limit

f(x) = lim
y→x, y 
=x

F (y)− F (x)

y − x

exists and is finite for almost all x, and represents the density of μ2 with respect

to Lebesgue measure. That is, f(x) = dμ2(x)
dx in the sense of Measure Theory

(Radon-Nikodym derivative).

Proposition A.17 (Characterization of absolute continuity of F−1). Let μ
be a non-degenerate probability measure on R with distribution function F . The
inverse function F−1 is absolutely continuous on (0, 1) if and only if μ is supported
on an interval, finite or not, and the absolutely continuous component of μ has on
that interval an a.e. positive density (with respect to the Lebesgue measure).

Since the absolute continuity is stronger than just continuity, necessarily the
support of μ should be a closed interval Δ, as already indicated in Proposition A.7.
In that case, an additional requirement concerning the density which is needed
for the absolute continuity of F−1 is equivalent to the property that the Lebesgue
measure on Δ is absolutely continuous with respect to μ.

Proof. We may assume that F−1 is continuous on (0, 1), so that Δ = supp(μ)
is an interval (not shrinking to a point by the non-degeneracy assumption). In
particular, F−1(F (x)) = x, for all x ∈ Δ.

By definition, F−1 is absolutely continuous on (0, 1) if and only if, for all
0 < a < b < 1 and ε > 0, there exists δ > 0 such that, for any sequence of
non-overlapping intervals (ai, bi) ⊂ [a, b],∑

i

(bi − ai) < δ =⇒
∑
i

(
F−1(bi)− F−1(ai)

)
< ε.

Note that when a continuous function u is non-decreasing, in the definition of
the absolute continuity one may require without loss of generality that
u(ai) < u(t) < u(bi) for ai < t < bi (otherwise, the intervals (ai, bi) may be
decreased without change of the value u(bi)− u(ai)). In the case u = F−1, as was
already explained in the proof of Proposition A.13, such a requirement implies that
ai = F (xi) and bi = F (yi−) for some xi < yi in Δ and, moreover, F−1(ai) = xi

and F−1(yi) = bi.
Thus, the definition of the absolute continuity of F−1 reduces to the statement

that, for any finite interval [x, y] ⊂ Δ and any ε > 0, there exists δ > 0 such that,
for any sequence of non-overlapping intervals (xi, yi) ⊂ [x, y],∑

i

(
F (yi−)− F (xi)

)
< δ =⇒

∑
i

(yi − xi) < ε.
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Equivalently, if μ(A) < δ then mes(A) < ε, for the open set A =
⋃

i(xi, yi). Using
regularity of measures, this implication can easily be extended to the class of all
Borel subsets A of [x, y]. Therefore, the Lebesgue measure on [x, y] is absolutely
continuous with respect to the measure μ restricted to [x, y]. Extending [x, y] to
the whole support interval, we finally conclude that F−1 is absolutely continuous
on (0, 1) if and only if the Lebesgue measure on Δ is absolutely continuous with
respect to μ. Proposition A.17 is established. �

In case μ is absolutely continuous, a more precise statement is available. When
F has a positive continuous derivative f in a neighbourhood of F−1(t), then F−1

is differentiable at t and has derivative (F−1)
′
(t) = 1/f(F−1(t)). In a more relaxed

form, the following statement is valid.

Proposition A.18. Let μ be a probability measure on R supported on an open
interval, finite or not, where it has an a.e. positive density f , and let F be the
distribution function of μ. Then, the inverse function F−1 is strictly increasing,
absolutely continuous and, moreover, for all 0 < t0 < t1 < 1,

F−1(t1)− F−1(t0) =

∫ t1

t0

1

f(F−1(t))
dt.

In particular, a.e. F−1 is differentiable and has derivative (F−1)
′
(t) = 1/f(F−1(t)).

Proof. Let μ be supported on (a, b) ⊂ R. Since f(x) > 0 a.e. on this interval,
F is continuous and strictly increasing on (a, b), and so is the inverse function
F−1 : (0, 1) → (a, b). Now, if a random variable U is uniformly distributed in (0, 1),
the random variable X = F−1(U) has the distribution function F and the density
f . Hence,∫ t1

t0

1

f(F−1(t))
dt = E

(
1

f(F−1(U))
�{t0<U<t1}

)
= E

(
1

f(F−1(U))
�{F−1(t0)<F−1(U)<F−1(t1)}

)
= E

(
1

f(X)
�{F−1(t0)<X<F−1(t1)}

)
=

∫ b

a

1

f(x)
�{F−1(t0)<x<F−1(t1)} f(x) dx

= F−1(t1)− F−1(t0). �

In the general case, when μ has a non-zero absolute continuous component, but
also may have a non-zero discrete or continuous singular component, the Radon-
Nikodym derivative of F−1 can be expressed in a similar way. Anyway, once F−1

is absolutely continuous, for this derivative we may take the function

(A.4) (F−1)
′
(t) = lim inf

s→t, s>t

F−1(s)− F−1(t)

s− t

by the Lebesgue differentiation theorem.

If t /∈ Im(F ), then F−1(s) = F−1(t) for some s > t, so (F−1)
′
(t) = 0. Oth-

erwise, t = F (x) for some x from the support Δ of μ, and F−1(t) = x. Let us
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see that the above lim inf may be taken along the values s = F (y−) with y > x.
Indeed, in case s is not of the type F (y−), we would have F−1(s′) = F−1(s) for
some t < s′ < s, and then

F−1(s′)− F−1(t)

s′ − t
>

F−1(s)− F−1(t)

s− t
.

Hence, one may exclude such points s from the lim inf in (A.4). That is, it suffices
to consider the values s = F (y−) with y ∈ Δ, y > x. In that case, by the left-
continuity of the inverse function, necessarily F−1(s) = y, so that

(F−1)
′
(t) = lim inf

y→x, y>x

y − x

F (y−)− F (x)

= lim inf
y→x, y>x

y − x

F (y)− F (x)
=

1

lim supy→x, y>x
F (y)−F (x)

y−x

.

The following proposition summarizes the conclusion at this point.

Proposition A.19. Let F be a non-degenerate distribution function. If the
inverse function F−1 is absolutely continuous, then it has the Radon-Nikodym de-
rivative

(F−1)
′
(t) =

1

f(F−1(t))
, t ∈ Im(F ) ∩ (0, 1),

where

f(x) = lim sup
y→x, y>x

F (y)− F (x)

y − x
.

Here, the function f represents a specific representative of the density of the
absolutely continuous component of the measure μ generated by F . According to
Proposition A.17, the assumption that F−1 is absolutely continuous is equivalent
to saying that f is a.e. positive on the supporting interval for μ.

For t /∈ Im(F ), one may set (F−1)
′
(t) = 0. Recall that the measure μ−1

generated by F−1 is supported on the set Im(F )∩ (0, 1), so it does not matter how
to define the Radon-Nikodym derivative on its complement.

The preceding proposition emphasizes the concept of I-function associated to
a distribution function F on the real line, extensively used throughout this investi-
gation.

Definition A.20 (I-function). The I-function of a distribution function F ,
whose inverse function F−1 is absolutely continuous on (0, 1), is defined as

IF (t) =
1

(F−1)′(t)
, 0 < t < 1.

This function is well-defined a.e., and then (F−1)
′
denotes the corresponding Radon-

Nikodym derivative.

In particular, if an absolutely continuous probability measure on μ on R with
distribution function F is supported on an open interval and has there an a.e.
positive density f , then the I-function is well-defined and is given, according to
Proposition A.18, by

IF (t) = f
(
F−1(t)

)
(a.e.)
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These I-functions are somehow related to isoperimetric profiles, and indeed
do represent isoperimetric properties for log-concave distributions. For example,
if μ is the standard normal law on R, the associated I-function is ϕ(Φ−1) where
Φ is the usual notation of the distribution function of μ and ϕ is its density. If
dμ(x) = 1

2 e
−|x]dx on R, then I(t) = min{t, 1− t}, 0 < t < 1.

According to Proposition A.19, the formula IF (t) = f
(
F−1(t)

)
remains to hold

in the general case of the absolutely continuous inverse function F−1 – however for
a specific representative of the density of the absolutely continuous component of μ.

To see that in general f cannot be chosen in an arbitrary way, let μ be supported
on an open interval and such that its absolutely continuous component has on that
interval an a.e. positive density f (so that the I-function is well-defined). Assume
that μ is continuous and has a non-zero singular continuous component μ1. Let
f̃ be another representative of the density such that f(x) 
= f̃(x) on a set A of
Lebesgue measure zero with μ1(A) > 0. Then

f
(
F−1(t)

)

= f̃

(
F−1(t)

)
on the set B = {t ∈ (0, 1) : F−1(t) ∈ A}. But, by Proposition A.1, the Lebesgue

measure of B is equal to μ(A) = μ1(A). Thus, f
(
F−1(t)

)

= f̃

(
F−1(t)

)
on a set of

positive Lebesgue measure.
Nevertheless, a number of important relations and integrals containing the

I-functions may be expressed explicitely in terms of f and do not depend on how
we choose the density f . Some of them are considered in the next section.

A.5. Integrals containing the derivative of F−1

The study of rates for Kantorovich distances for empirical measures requires
representation formulas for integrals containing the Radon-Nikodym derivative of
F−1. The following general formula involves a weight which will take concrete
forms in specific examples.

Proposition A.21. Let F be a distribution function such that the inverse
function F−1 is absolutely continuous and has a Radon-Nikodym derivative (F−1)

′
.

For any Borel measurable function w : (0, 1) → [0,∞), and any p ≥ 1,

(A.5)

∫ 1

0

∣∣(F−1)
′
(t)

∣∣p w(t) dt =

∫
{0<F (x)<1}

w(F (x))

f(x)p−1
dx,

where f is a density of the absolutely continuous component of F .

Proof. The formula (A.5) is a variant of integration by using a change of
variable. If F is degenerate (a mass point), both integrals are vanishing, so let F
be non-degenerate.

As we know, the absolute continuity of F−1 is equivalent to the property that
the probability measure μ with distribution function F is supported on a non-
degenerate interval Δ of the real line (open or closed, finite or not) and, moreover
an absolutely continuous component of μ should have an a.e. positive density f
on Δ. Note that, up to the endpoints, Δ is the same as Δ0 = {0 < F (x) < 1}.
Furthermore, the integral on the right-hand side in (A.5) will not change when
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changing f on a set of null Lebesgue measure. So, we may take for f the one
defined in Proposition A.19, i.e.

f(x) = lim sup
y→x, y>x

F (y)− F (x)

y − x
.

Now, by Proposition A.4, the function F pushes forward the Lebesgue measure
on Δ0 to the the inverse measure μ−1. Equivalently,∫

Δ0

R
(
F (x)

)
dx =

∫ 1

0

R(t) dμ−1(t)

for any R such that at least one of the above integrals is defined in the Lebesgue
sense. But μ−1 is supported on the image set Δ′ ≡ Im(F ) ∩ (0, 1), which has a
positive Lebesgue measure, cf. Proposition A.16. Moreover, by the assumption,

μ−1 has the density (F−1)
′
, hence∫

Δ0

R
(
F (x)

)
dx =

∫
Δ′

R(t) (F−1)
′
(t) dt.

Applying Proposition A.19, we get∫
Δ0

R
(
F (x)

)
dx =

∫
Δ′

R(t)

f(F−1(t))
dt.

In particular, since F−1(F (x)) = x on Δ,∫
Δ0

w(F (x))

f(x)p−1
dx =

∫
Δ0

w(F (x))

f(F−1(F (x))p−1
dx

=

∫
Δ′

w(t)

f(F−1(t))p
dt =

∫
Δ′

∣∣(F−1)
′
(t)

∣∣p w(t) dt.
Finally, recall that (F−1)

′
= 0 a.e. outside Im(F ). Therefore, without any change,

the last integral may be extended to the whole interval (0, 1), and it will not depend
on the choice of the Radon-Nikodym derivate for F−1. The proof is complete. �

Proposition A.21 will be used with the weight functions w(t) = (t(1− t))p/2.

Corollary A.22. Let F be a distribution function such that the inverse func-

tion F−1 is absolutely continuous and has a Radon-Nikodym derivative (F−1)
′
.

Then, for all p ≥ 1,∫ 1

0

∣∣(F−1)
′
(t)

∣∣p (
t(1− t)

)p/2
dt =

∫
0<F (x)<1

[F (x)(1− F (x))]p/2

f(x)p−1
dx,

where f is a density of the absolutely continuous component of F . In particular,∫ 1

0

(
(F−1)

′
(t)

)2
t(1− t) dt =

∫
0<F (x)<1

F (x)(1− F (x))

f(x)
dx.

Another case of interest is the constant weight function w(t) = 1. Taking p = 1,
we arrive at the description of the length of the supporting interval.
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Corollary A.23. Let F be a distribution function such that F−1 is absolutely

continuous and has a Radon-Nikodym derivative (F−1)
′
. Then, the integral∫ 1

0

∣∣(F−1)
′
(t)

∣∣ dt
represents the length of the smallest interval supporting the probability measure with
the distribution function F .

A.6. Monotone Lipschitz transforms

In the last section of this appendix, we examine Lipschitz transformations of
measures and how they translate on the associated distribution functions.

If ν is a given non-atomic probability measure on the Borel sets of R with a
(continuous) distribution function G, any other probability measure μ on the real
line with the distribution function F can be obtained as a monotone transform of ν,
i.e. as the distribution of a monotone map T under ν. One then says that T pushes
forward ν to μ, or G to F , and writes in symbols μ = ν T−1 = T (ν).

A canonical map T : R → R is given by

T (x) = F−1
(
G(x)

)
, x ∈ R.

Indeed, since G is continuous, it pushes forward ν to the uniform measure on (0, 1),
while the inverse function F−1 pushes forward the uniform measure to μ.

In a number of questions, it is desirable to know whether or not T is Lipschitz,
and how to estimate its Lipschitz semi-norm

‖T‖Lip = sup
x<y

F (y)− F (x)

y − x
.

A simple characterization can be given by comparing the associated I-functions

IF (t) =
1

(F−1)′(t)
, IG(t) =

1

(G−1)′(t)
, 0 < t < 1,

from Definition A.20.

Proposition A.24. Suppose that G is continuous and G−1 is absolutely contin-
uous. Given a distribution function F , let T be the canonical map pushing forward
G to F . The map T has a finite Lipschitz semi-norm with ‖T‖Lip ≤ 1

c for some

c > 0 if and only if the inverse function F−1 is absolutely continuous, and

IF (t) ≥ c IG(t) a.e.

A characterization of the absolute continuity of the inverse functions is given in
Proposition A.17, while Proposition A.19 describes the associated I-functions. In
many practical situations, ν is absolutely continuous, is supported on some interval,
and has there an a.e. positive density g. In that case,

IG(t) = g
(
G−1(t)

)
, 0 < t < 1.

For example, the two-sided exponential distribution ν with density g(x) = 1
2 e

−|x|,
x ∈ R, has the the associated function IG(t) = min{t, 1− t}. Hence, the inequality
of the form

(A.6) IF (t) ≥ c min{t, 1− t} a.e.
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means that the measure μ is obtained from ν as a Lipschitz monotone transform
with ‖T‖Lip ≤ 1

c .

Proof of Proposition A.24. (Sufficiency) Assume that F−1 is absolutely continuous.
By the assumption, the Radon-Nikodym derivative of the inverse function admits
a pointwise upper-bound

(F−1)
′ ≤ 1

c
(G−1)

′
a.e.

Hence, integrating this inequality, for all 0 < t < s < 1,

(A.7) F−1(s)− F−1(t) ≤ 1

c

(
G−1(s)−G−1(t)

)
.

Note that ν must have an interval Δ as its support (Proposition A.17), and therefore
G−1(G(x)) = x for all x ∈ Δ. Changing the variables t = G(x), s = G(y) with
x, y ∈ Δ, x < y, this gives T (y)− T (x) ≤ 1

c (y − x), which means that ‖T‖Lip ≤ 1
c .

(Necessity) We can start with the above relation (A.7) for the inverse functions,
which immediately implies that F−1 is absolutely continuous (since G−1 is). More-
over, dividing this inequality by s− t and letting s ↓ t, we obtain, by the Lebesgue
differentiation theorem, that (F−1)

′ ≤ 1
c (G

−1)
′
a.e. �

If ν is the uniform measure on (0, 1), then IG(t) ≡ 1, and Proposition A.24
may be formulated in a different manner.

Proposition A.25 (Lipschitz inverse distribution function). Let F be the dis-
tribution function of a non-degenerate probability measure μ on R. The inverse
function F−1 has a finite Lipschitz semi-norm ‖F−1‖Lip on (0, 1) if and only if μ
is supported on a finite interval Δ, and the absolutely continuous component of μ
has a density f which is separated from zero on Δ. In this case,

‖F−1‖Lip =
1

ess infx∈Δ f(x)
.

Proof. In terms of the modulus of continuity, the Lipschitz property is equiv-
alent to the relation

δF−1(ε) ≤ Cε, 0 < ε < 1,

where the optimal value of C represents the Lipschitz semi-norm ‖F−1‖Lip. In this

case, the support Δ of μ has to be a finite closed interval, finite or not (Proposi-
tion A.12). Moreover, since F−1 is absolutely continuous, an absolutely continuous
component of μ has a density f which is a.e. positive on Δ (Proposition A.17).

Assuming that δ = Cε < 1, the relation δF−1(ε) ≤ Cε is equivalent to εF (δ)≥ε,
where εF is the modulus of increase of F (by Proposition A.13). That is,

εF (δ) = inf
{
F (y)− F (x) : y − x > δ, x, y ∈ Δ

}
≥ δ

C
.

But, by the Lebesgue differentiation theorem, 1
δ (F (x+ δ)−F (x)) → f(x) as δ ↓ 0,

for almost all x ∈ Δ. Hence, ‖F−1‖Lip ≤ C implies f(x) ≥ 1/C a.e. on Δ.

Conversely, the latter easily implies εF (δ) ≥ δ/C and hence ‖F−1‖Lip ≤ C. The
proof is complete. �





APPENDIX B

Beta distributions

This appendix is devoted to special properties of the beta distributions needed
in the analysis of formulas such as the one given in Theorem 4.6. As we believe,
many of such properties are of independent interest. Some of them can be studied
by using only the fact that all beta distributions with parameters α, β ≥ 1 are
log-concave. Therefore, it is natural first to collect together a number of relevant
general results about such measures. We next investigate Poincaré-type inequalities
for beta distributions, both in the standard L2-norm but also for Lp-norms, p ≥ 1,
including the p = 1 case corresponding to Cheeger-type inequalities. Mean square
beta distributions are analyzed in the subsequent paragraph. Quite a bit of work
is then devoted, in the last part, to refined lower-bounds and lower integral bounds
for beta densities. While the topic is classical, most of results developed here seem
to be new.

The beta distribution is denoted by Bα,β , α, β > 0, which is always treated as
a probability measure on (0, 1) with density

(B.1)
dBα,β(x)

dx
=

1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1,

where

B(α, β) =

∫ 1

0

xα−1(1− x)β−1 dx =
Γ(α)Γ(α)

Γ(α+ β)

is the normalizing factor (the classical beta function in two variables). If a random
variable X has the distribution Bα,β , its moments are given by

(B.2) E(Xp) =
Γ(α+ β)

Γ(α+ β + p)

Γ(α+ p)

Γ(α)
, p ≥ 0.

In particular,

E(X) =
α

α+ β
, E(X2) =

α(α+ 1)

(α+ β)(α+ β + 1)

and

Var(X) =
αβ

(α+ β)2 (α+ β + 1)
.

B.1. Log-concave measures on the real line

In this section, we first recall some general facts on log-concave measures on Rk,
mostly specializing to the one-dimensional case. We refer to the classical papers by
Borell [Bor2] and Brascamp and Lieb [B-L] as general references on the subject.

101



102 B. BETA DISTRIBUTIONS

A probability measure μ on the Euclidean space Rk is called log-concave, if it
satisfies a Brunn-Minkowski-type inequality

(B.3) μ
(
(1− t)A+ tB

)
≥ μ(A)1−tμ(B)t, 0 < t < 1,

in the class of all non-empty Borel subsets A and B of Rk, where

(1− t)A+ tB =
{
(1− t)x+ ty : x ∈ A, y ∈ B

}
denotes the usual Minkowski average. Equivalently (cf. [Bor2]), μ must be sup-
ported on a convex set V in Rn, where it has a log-concave density with respect
to the Lebesgue measure of the same dimension as V . Such characterization can
easily be obtained, by applying the Prékopa-Leindler theorem, cf. [B-L,L2,L3].

By the dilation-type Lemma 3.1 of Borell [Bor2], log-concave measures have
moments of all orders. In a more precise sharp form, letting X be a random vector
in Rk with log-concave distribution μ, and given any norm ‖ · ‖ on Rk, for all t ≥ 1
and x > 0,

P
{
‖X‖ ≥ tx

}
≤ P

{
‖X‖ ≥ x

}(t+1)/2
.

When the norm is Euclidean, this inequality was first obtained by Lovász and
Simonovits [L-S], and later Guédon [Gu] extended it to arbitrary norms. This
results entails a multidimensional Khinchine-type inequality

(B.4)
[
E

(
‖X‖p

)]1/p ≤ CpE
(
‖X‖

)
where C > 0 is an absolute constant. Actually, it remains to hold for an arbitrary
semi-norm.

On the real line, the definition of log-concave measure reduces to the require-
ment that either μ is a mass point, or it is supported on some interval (a, b) ⊂ R,
finite or not, where it has a positive density f such that the function log f is concave
on (a, b). If F is the distribution function associated with μ, then necessarily the
associated I-function I(t) = f(F−1(t)) from Definition A.20 is concave on (0, 1).
This already shows that all log-concave measures on R are unimodal. In fact,
the property that I is concave characterizes the class of all absolutely continuous
log-concave probability measures on the real line. As a consequence of the Brunn-
Minkowski-type inequality (applied to half-axes), one immediately obtains that the
functions F and 1− F are also log-concave on the supporting interval (a, b).

According to (B.4), any real random variable X having a log-concave distri-
bution μ has finite moments of any order, and moreover an exponential moment
E(eε|X|) is finite for some ε > 0. The global behavior of μ is mostly determined or
can be controled by the two parameters – the expectation E(X) and the variance
Var(X). Many other quantities or characteristics of μ are often related to these
parameters. The following statement is one such example.

Proposition B.1. Let X > 0 be a random variable with median m, having a
log-concave distribution. Then

(B.5) E(X) ≤ m

log 2
.

The inverse bound m ≤ 2E(X) obviously holds without the log-concavity as-
sumption. With an existing constant, the inequality EX ≤ Cm is well-known and
holds in much greater generality in the form of the bound E(‖X‖) ≤ Cm(‖X‖)
(where X is a random vector in Rk having an arbitrary log-concave distribution
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and ‖ · ‖ is an arbitrary norm) as a consequence of Borell’s result. In the current
formulation, the constant 1

log 2 is sharp and is attained for the standard exponential

distribution ν with density e−x, x > 0.

Proof. It may be assumed that a = ess inf X = 0 since the stated inequality
(B.5) being written for X − a is getting stronger. So, let the distribution of X be
supported on an interval (0, b), 0 < b ≤ ∞, with the distribution function F . Using
homogeneity, assume that m = log 2, so that F (log 2) = 1

2 .
We only use the property that the function 1 − F (x) is log-concave on (0, b).

Hence, the function T (x) = − log(1− F (x)), which pushes forward ν to the distri-
bution of X, is concave. Let l be a linear function whose graph is tangent to the
graph of T at the point log 2. That is, l(log 2) = T (log 2) = log 2 and, for some
c ∈ R,

l(x) = l(log 2) + c(x− log 2) = log 2 + c(x− log 2).

Since l ≥ T and T ≥ 0 with T (0+) = 0, necessarily c ≤ 1. Hence, if ξ is distributed
according to ν, we obtain that

E(X) = E
(
T (ξ)

)
≤ E

(
l(ξ)

)
= log 2 + c(1− log 2) ≤ 1.

�

Proposition B.2 (Variance of a log-concave distribution). Let X be a ran-
dom variable with median m, having a log-concave distribution μ with (log-concave)
density f . Then

(B.6)
1

12 Var(X)
≤ f(m)2 ≤ 1

2 Var(X)
.

Furthermore,

(B.7)
1

12 Var(X)
≤ sup

x∈R

f(x)2 ≤ 1

Var(X)
,

(B.8)
1

3e2 Var(X)
≤ f

(
E(X)

)2 ≤ 1

Var(X)
.

For the proof of (B.6), we refer to [Bob4], Proposition 4.1. The left-hand side of
(B.7) is weaker, but is still sharp, since it is attained for the uniform distribution in
the unit interval. Here, the constant 1

12 actually serves for the class of all probability
densities on the real line. This fact was already mentioned without giving details in
1960’s by Statulevičius [Sta] and later was emphasized by Hensley [He], who also
considered upper estimates in the class of log-concave densities that are symmetric
about the origin (cf. also [Ba]). As for the right-hand sides of (B.6) and (B.7), they
are also sharp and both are attained for the one-sided exponential distribution.

The upper-bound on the maximum of the density in (B.7) is due to Fradelizi
[F], who proved it for marginals of convex bodies in isotropic position. A simple
proof of this bound in the general log-concave case may be found in [B-C]. It is
based on the concavity of the function I(t) = f(F−1(t)). Note that this property
implies that supx f(x) ≤ 2f(m).

The upper-bound in (B.8) follows from a similar bound for the maximum of
the density. To comment on the lower-bound, first let us mention that the value
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h = 2f(m) is also known as an optimal constant in the Cheeger-type analytic
inequality

(B.9) h

∫ ∞

−∞

∣∣u(x)−m(u)
∣∣ dμ(x) ≤

∫ ∞

−∞

∣∣u′(x)
∣∣ dμ(x),

holding in the class of all absolutely continuous functions u on the real line with
median m(u) under μ (cf. [Bob4]). Being applied to the indicator functions of
half-axes (−∞, x] (in the approximate sense), it yields the relation

hmin
{
F (x), (1− F (x)

}
≤ f(x), a < x < b,

where F is the distribution function of X and (a, b) is the supporting interval of f .
In turn, this relation implies the Cheeger-type analytic inequality. Therefore, by
the upper-bound in (B.6),

f(x) ≥ 1√
3 Var(X)

min
{
F (x), (1− F (x)

}
for all x ∈ (a, b). On the other hand, there is a two-sided bound

1

e
≤ P

{
X ≤ E(X)

}
≤ 1− 1

e

(cf. [Bob5], Lemma 3.3). So, taking x = E(X), we arrive at the lower-bound in
(B.8).

Finally, it is worth mentioning that together with the lower-bound in (B.6), the
Cheeger-type inequality (B.9) yields the Poincaré-type inequality

(B.10) Varμ(u) ≤ 12 Var(X)

∫ ∞

−∞
u′(x)2 dμ(x)

for all absolutely continuous functions u on the real line (see e.g. [Bob4], Corol-
lary 4.3).

B.2. Log-concave measures of high order

A number of results about general log-concave measures can further be sharp-
ened for certain subclasses, and here we discuss one of them.

A random variable X > 0 is said to have a log-concave distribution of order
α ≥ 1 if it has a density of the form

f(x) = xα−1ρ(x),

for some log-concave function ρ on (0,∞). For example, the standard Gamma-
distribution with α ≥ 1 degrees of freedom, which has the density

f(x) =
1

Γ(α)
xα−1 e−x, x > 0,

is log-concave of order α. The beta distribution Bα,β is also log-concave of order α
for all α ≥ 1 and β ≥ 1.

When α is large, such probability measures are more concentrated about a
point in comparison with general log-concave measures. This can already be seen
from the following proposition.
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Proposition B.3. If X has a log-concave distribution of order α ≥ 1, then

Var(X) ≤ 1

α

[
E(X)

]2
.

Here, equality is attained for the standard Gamma-distribution with α degrees
of freedom. This assertion follows from a result of Borell [Bor1] about reverse
Lyapunov inequalities on convex bodies (and from the results of [B-M-P] in case
α is integer). For more details and some interesting concentration applications,
we refer to [Bob5,Bob6] and [B-Ma]. As shown in [Bob6], Proposition B.3
may be used to get a distributional self-improvement of Gaussian type. (A similar
statement with integer values of α – about deviations of X from the maximum of
the density – was also studied by Klartag [Kl]).

Proposition B.4 (Concentration inequalities). If X has a log-concave distri-
bution of order α ≥ 1, and Y is an independent copy of X, then, for all 0 ≤ r ≤ 1,

P
{∣∣X − E(X)

∣∣ ≥ rE(X)
}

≤ 2 e−αr2/4

and

P
{
|X − Y | ≥ rE(X)

}
≤ 2 e−αr2/8.

We briefly recall the argument of proof. Without loss of generality, it may
be assumed that E(X) = 1 and that the density f(x) = xα−1ρ(x) is compactly
supported. For t ∈ R, consider random variables Xt with densities

ft(x) =
xα−1etxρ(x)∫ ∞

0
xα−1etxρ(x) dx

, x > 0.

Since all Xt have log-concave distributions of the same order α, by Proposition B.3,
Var(Xt) ≤ 1

α E(Xt)
2 or, in terms of X,

(B.11) E(X2etX)E(etX)−
[
E(XetX)

]2 ≤ 1

α

[
E(XetX)

]2
.

The function u(t) = logE(etX), t ∈ R, is convex, and the function

v(t) = u′(t) =
E(XetX)

E(etX)

is strictly positive and has a positive derivative on the whole real line. One may

rewrite (B.3) in terms of v as v′(t) ≤ 1
α v(t)2. Equivalently (− 1

v(t) )
′ ≤ 1

α , so that,

after integration and using the assumption v(0) = E(X) = 1,∣∣∣∣v(t)− 1

v(t)

∣∣∣∣ =

∣∣∣∣ 1

v(t)
− 1

v(0)

∣∣∣∣ ≤ |t|
α

for all t ∈ R. Set u0(t) = logE et(X−EX) = u(t)− t and v0(t) = u′
0(t) = v(t)− 1, so

that

u0(t) ≥ 0, u0(0) = v0(0) = 0, v0(t) > −1

for all t ∈ R. Hence
|v0(t)|

1 + |v0(t)|
≤ |v0(t)|

1 + v0(t)
≤ |t|

α
.
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In particular, for |t| ≤ α
2 , necessarily |v0(t)| ≤ 1 and thus |v0(t)| ≤ 2 |v0(t)|

1+v0(t)
≤ 2 |t|

α .

Integrating from 0 to t, we obtain that

∣∣u0(t)
∣∣ ≤

∣∣∣∣ ∫ t

0

∣∣v0(s)∣∣ ds∣∣∣∣ ≤ t2

α
.

Since E(X) = 1, subgaussian bounds on the Laplace transform follow in the form

E
(
et(X−EX)

)
≤ et

2/α, E
(
et(X−Y )

)
≤ e2t

2/α

in the interval |t| ≤ α
2 . Finally, an application of Chebyshev’s inequality easily

yields, for 0 ≤ r ≤ 1,

P
{
X − E(X) ≥ rE(X)

}
≤ e−αr2/4 , P

{
X − Y ≥ rE(X)

}
≤ e−αr2/8 .

Similar bounds hold for the left deviations, concluding therefore the proof of the
proposition.

B.3. Spectral gap

After these preliminaries, we next turn to the beta distributions themselves.
Let us start with a spectral gap or Poincaré-type inequality. It will however differ
in the right-hand side from the usual Poincaré-type inequalities (B.10) by a specific
weight adapted to the beta distributions.

Recall the beta distribution Bα,β , α, β > 0, from (B.1). We denote by
VarBα,β

(u) the variance of a function u (with finite second moment) under this
measure.

Proposition B.5 (Poincaré inequality for Bα,β). For any absolutely continu-
ous function u on (0, 1) with finite second moment under Bα,β,

(B.12) VarBα,β
(u) ≤ 1

α+ β

∫ 1

0

x(1− x) u′(x)2 dBα,β(x),

where u′ denotes the (Radon-Nikodym) derivative of u.

For example, for the uniform distribution (when α = β = 1), the inequality is
translated equivalently as∫ 1

0

∫ 1

0

(u(x)− u(y))2 dxdy ≤
∫ 1

0

x(1− x) u′(x)2 dx.

In this inequality, as well as in the general one (B.12), the constant 1
α+β is optimal

and is attained for linear functions. Indeed, for u(x) = x, i.e. for a random variable
X distributed according to Bα,β , we have

VarBα,β
(u) = Var(X) =

αβ

(α+ β)2 (α+ β + 1)
.
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On the other hand,∫ 1

0

x(1− x) u′(x)2 dBα,β(x) = E
(
X(1−X)

)
=

α

α+ β
− α(α+ 1)

(α+ β)(α+ β + 1)

=
αβ

(α+ β) (α+ β + 1)

so that indeed equality holds in Proposition B.5 for u(x) = x.
Let us also mention that in order to prove Poincaré-type inequalities on the real

line in the class of all absolutely continuous functions, such as in Proposition B.5,
it suffices to establish them for the class of smooth functions.

Proof. It is based on a standard expansion in orthogonal polynomials
(cf. e.g. [B-G-L]). The normalized Jacobi polynomials J�

α,β with � = 0, 1, 2, . . .

form an orthonormal basis in L2((0, 1), Bα,β). Moreover, they are eigenvectors of
the second-order linear differential operator

Lu(x) = x(1− x) u′′(x) +
[
α− (α+ β)x

]
u′(x)

with eigenvalues

λ�
α,β = �(�+ α+ β − 1), � = 0, 1, 2, . . .

Furthermore, by integration by parts, for any smooth function u on (0, 1),∫ 1

0

u (−Lu) dBα,β =

∫ 1

0

x(1− x) u′(x)2 dBα,β(x).

Note that all eigenvalues are non-negative, and the smallest one λ0
α,β = 0 corre-

sponds to the constant eigenfunction J0
α,β(x) = 1. The next eigenvalue λ1

α,β = α+β

corresponds to the linear eigenfunction J1
α,β(x) = const · (x− α

α+β ).

Now, if u is expanded into the Fourier series u =
∑∞

�=0 a�J
�
α,β , we have

VarBα,β
(u) =

∞∑
�=1

a2�

and ∫ 1

0

x(1− x) u′(x)2 dBα,β(x) =

∞∑
�=1

a2� λ
�
α,β .

The conclusion follows by noting that λ�
α,β ≥ λ1

α,β = α+ β for all � ≥ 1. �

The following is a restatement of Proposition B.5 in the particular case α = k
and β = n− k + 1 in terms of the samples taken from the uniform distribution.

Corollary B.6. Let (U1, . . . , Un) be a sample drawn from the uniform dis-
tribution on (0, 1). For any k = 1, . . . , n and any absolutely continuous function
u : (0, 1) → R,

Var
(
u(U∗

k )
)
≤ 1

n+ 1
E

(
U∗
k (1− U∗

k ) u
′(U∗

k )
2
)
.
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B.4. Poincaré-type inequalities for Lp norms

While the Poincaré inequalities for the beta distributions of Proposition B.5
have been obtained from a standard L2 orthogonal decomposition, when α, β ≥ 1,
they actually follow, up to an absolute constant, from a stronger result for the
L1-norm in the form of a weighted Cheeger inequality.

Proposition B.7 (Weighted Cheeger inequality for beta distributions). Given
α, β ≥ 1, for any absolutely continuous function u on (0, 1) with median m under
the beta distribution Bα,β,∫ 1

0

∣∣u(x)−m
∣∣ dBα,β(x) ≤ C√

α+ β + 1

∫ 1

0

√
x(1− x)

∣∣u′(x)
∣∣ dBα,β(x),

where C is an absolute constant. One may take C = 2.5.

Proof. Consider an inequality of the form

(B.13)

∫ 1

0

∣∣u(x)−m
∣∣ dBα,β(x) ≤ Cα,β

∫ 1

0

√
x(1− x)

∣∣u′(x)
∣∣ dBα,β(x).

Here we do not loose generality by assuming that u ≥ 0 and m = 0. Moreover,
it is equivalent to the particular case when u is asymptotically the indicator func-
tion of an interval (0, x) (like in many other similar Sobolev-type inequalities, see
e.g. [B-H2]). In this case (B.13) becomes

min
{
Fα,β(x), 1− Fα,β(x)

}
≤ Cα,β

√
x(1− x) fα,β(x), 0 < x < 1,

where fα,β(x) =
1

B(α,β) x
α−1(1 − x)β−1 is the density of Bα,β with respect to the

Lebesgue measure and

Fα,β(x) = Bα,β([0, x]) =
1

B(α, β)

∫ x

0

yα−1(1− y)β−1 dy

is its associated distribution function.
Replacing the role of α and β, that is, using the identity 1 − Fα,β(1 − x) =

Fβ,α(x), one may further assume that Fα,β(x) ≤ 1
2 , or equivalently, 0 < x ≤ mα,β ,

where mα,β denotes the median of a random variable Xα,β with distribution Bα,β .
Thus, under the requirement that Cα,β = Cβ,α, it suffices to show that∫ x

0

yα−1(1− y)β−1 dy ≤ Cα,β

√
x(1− x) xα−1(1− x)β−1, 0 < x ≤ mα,β .

Changing the variable y = tx, the above is simplified to√
x

1− x

∫ 1

0

tα−1

(
1− tx

1− x

)β−1

dt ≤ Cα,β , 0 < x ≤ mα,β .

But the functions x → x
1−x and x → 1−tx

1−x = 1+ x
1−x (1− t) are increasing. Hence,

the extremal situation corresponds to the point x = mα,β , which leads us back to
the partial case of the previous inequality, namely

min
{
Fα,β(mα,β), 1− Fα,β(mα,β)

}
≤ Cα,β

√
mα,β (1−mα,β) fα,β(mα,β).
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In addition, 1 − mα,β = mβ,α and fα,β(mα,β) = fβ,α(mβ,α), so the preceding
inequality is symmetric in (α, β). Since the left-hand side is equal to 1

2 , the optimal
constant is thus given by

Cα,β =
1

2
√
mα,β (1−mα,β) fα,β(mα,β)

.

Now, since α ≥ 1 and β ≥ 1, the distribution Bα,β is log-concave. Denoting by
Xα,β a random variable having a beta distribution with parameters α and β, by
Proposition B.1,

mα,β ≥ (log 2)E(Xα,β) = log 2
α

α+ β

and 1−mα,β = mβ,α ≥ log 2 β
α+β . Also, by Proposition B.2,

1

f2
α,β(mα,β)

≤ 12 Var(Xα,β) =
12αβ

(α+ β)2 (α+ β + 1)
.

The two bounds yield

Cα,β ≤ 1

2 log 2

√
12√

α+ β + 1
<

2.5√
α+ β + 1

.

Proposition B.7 follows. �

Within universal factors, the inequality of Proposition B.7 is actually equivalent
to the Poincaré-type inequality of Proposition B.5, which is due to the log-concavity
of the beta distributions. We refer to [L4] for discussions of a similar property in
the class of general log-concave probability distributions on Rn.

We now extend Proposition B.7 to arbitrary Lp norms.

Proposition B.8 (Lp-Poincaré-type inequality for beta distributions). Given
α, β ≥ 1, for any absolutely continuous function u on (0, 1) and any p ≥ 1,∫ 1

0

∫ 1

0

∣∣u(x)− u(y)
∣∣p dBα,β(x)dBα,β(y)

≤
(

5p√
α+ β + 1

)p ∫ 1

0

(
x(1− x)

)p/2∣∣u′(x)
∣∣p dBα,β(x).

Proof. First suppose that u has median zero under Bα,β . Then the same is
true for u+(x) = max{u(x), 0} and u−(x) = max{−u(x), 0}, and Proposition B.7
being applied to up

+ and up
− yields∫ 1

0

∣∣u(x)∣∣p dBα,β(x) ≤ pCα,β

∫ 1

0

((
x(1− x)

)1/2∣∣u′(x)
∣∣)∣∣u(x)∣∣p−1

dBα,β(x),

where

Cα,β =
2.5√

α+ β + 1
.

By Hölder’s inequality with exponents p and q = p/(p − 1), the last integral does
not exceed(∫ 1

0

(
x(1− x)

)p/2∣∣u′(x)
∣∣p dBα,β(x)

)1/p ( ∫ 1

0

∣∣u(x)∣∣p dBα,β(x)

)1/q

,
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and we arrive at∫ 1

0

∣∣u(x)∣∣p dBα,β(x) ≤ (pCα,β)
p

∫ 1

0

(
(x(1− x)

)p/2∣∣u′(x)
∣∣p dBα,β(x).

To remove the assumption concerning the median of u, one may also write∫ 1

0

∣∣u(x)−m
∣∣p dBα,β(x) ≤ (pCα,β)

p

∫ 1

0

(
(x(1− x)

)p/2∣∣u′(x)
∣∣p dBα,β(x)

where m is a median of u under Bα,β . It remains to integrate the inequality∣∣u(x)− u(y)
∣∣p ≤ 2p−1

(∣∣u(x)−m
∣∣p + ∣∣u(y)−m

∣∣p)
over Bα,β ⊗Bα,β . The proposition is proved. �

As another variant, we also obtain that∫ 1

0

∣∣∣∣u(x)− ∫ 1

0

u dBα,β

∣∣∣∣p dBα,β(x)

≤
(

5p√
α+ β + 1

)p ∫ 1

0

(
x(1− x)

)p/2∣∣u′(x)
∣∣p dBα,β(x).

To conclude this paragraph, we restate Proposition B.8 in the particular case
α = k and β = n− k + 1 (in analogy with Corollary B.6).

Corollary B.9. Let (U1, . . . , Un) be a sample drawn from the uniform distri-
bution on (0, 1), and let p ≥ 1. For any k = 1, . . . , n, and any absolutely continuous
function u : (0, 1) → R,

E
(∣∣u(U∗

k )− u(V ∗
k )

∣∣p) ≤
(

5p√
n+ 2

)p

E

((
U∗
k (1− U∗

k )
)p/2∣∣u′(U∗

k )
∣∣p),

where V ∗
k is an independent copy of U∗

k .

B.5. Gaussian concentration

If one of the parameters α and β is large, the beta distribution is close to the
delta measure at the point α

α+β , the baricenter of the measure. This is already seen

from the obvious bound

Var(X) ≤ 1

4(α+ β)

where X is a random variable distributed according to Bα,β . It also follows from
Proposition B.5, which yields a Poincaré-type inequality

VarBα,β
(u) ≤ 1

4(α+ β)

∫ 1

0

u′(x)2 dBα,β(x)

with a weakened gradient side. As is well-known (cf. [G-M,B-U,Bob2,L3]), such
an analytic inequality provides much more, namely,

E
(
ec

√
α+β |X−E(X)|) ≤ 2

with some absolute constant c > 0.
In fact, this exponential bound may further be sharpened here to a Gaussian

bound.
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Proposition B.10 (Gaussian concentration of beta distributions). If X is a
random variable distributed according to Bα,β with α, β ≥ 1, and if Y is an inde-
pendent copy, then for all r ≥ 0,

P
{∣∣X − E(X)

∣∣ ≥ r
}

≤ 2 e−(α+β)r2/8

and
P
{
|X − Y | ≥ r

}
≤ 2 e−(α+β)r2/16.

Proof. A main point of the argument is that X has a log-concave distribution
of order α, while 1−X has a log-concave distribution of order β. Hence, the general
Proposition B.4 may be applied to both X and 1−X.

Note first that, due to the fact that |X−E(X)| < 1 a.s., it is enough to consider
the values 0 ≤ r ≤ 1. The double application of Proposition B.4 then yields

P
{∣∣X − E(X)

∣∣ ≥ rE(X)
}

≤ 2 e−max(α,β) r2/4 .

It remains to use max(α, β) ≥ α+β
2 together with E(X) ≤ 1. Similarly, from the

second bound of Proposition B.4,

P
{
|X − Y | ≥ rE(X)

}
≤ 2 e−max(α,β) r2/8 .

�

Remark B.11. The subgaussian bound of Proposition B.11 implies that with
some absolute constant c > 0

E
(
e(α+β) (X−E(X))2/c2

)
≤ 2.

The best value of c > 0 in such an inequality represents the so-called ψ2-norm,

i.e. the Orlicz norm generated by the Young function ψ2(t) = et
2 − 1. Thus, for

X ∼ Bα,β , we have ∥∥X − E(X)
∥∥
ψ2

≤ c√
α+ β

.

As well as for any other log-concave probability distribution on the line with finite
ψ2-norm, the latter means that the beta distribution shares a logarithmic Sobolev
inequality. More precisely, we get that, for any absolutely continuous function
u : (0, 1) → R,∫ 1

0

u2 log u2 dBα,β −
∫ 1

0

u2 dBα,β log

∫ 1

0

u2 dBα,β ≤ C

α+ β

∫ 1

0

u′2 dBα,β

with some absolute constant C (cf. [Bob4]). This improves upon the usual
Poincaré-type inequality (although does not imply Proposition B.5).

B.6. Mean square beta distributions

This paragraph is concerned with square products of the beta distributions
Bα,β with positive integer parameters α = k, β = n − k + 1. More precisely, the
representation of Theorem 4.6 leads to investigate the properties of the probability
measures on the unit square (0, 1)× (0, 1) given by

Bn =
1

n

n∑
k=1

Bk,n−k+1 ⊗Bk,n−k+1.

Such a measure Bn will be called the mean square beta distribution of order n.
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Every such measure is symmetric around the diagonal x = y on the xy plane and
has the uniform distribution on (0, 1) as its marginals. It may also be introduced
explicitly via the density

dBn(x, y)

dx dy
= n

n∑
k=1

(
Ck−1

n−1

)2
(xy)k−1

(
(1− x)(1− y)

)n−k
, 0 < x, y < 1.

This expression is however not quite tractable.
If n is large, Bn is nearly concentrated on the diagonal x = y. To get an idea

about the rate of concentration, we refer to the developments in Section 4.2 of
Chapter 4. Indeed,∫ 1

0

∫ 1

0

|x− y|2 dBn(x, y) =
1

n

n∑
k=1

∫ 1

0

∫ 1

0

|x− y|2 dBk,n−k+1(x)dBk,n−k+1(y)

=
2

n

n∑
k=1

Var(U∗
k ).

Here, U∗
1 ≤ · · · ≤ U∗

n is the order statistics associated with a sample (U1, . . . , Un)
drawn from the uniform distribution. But, from Theorem 4.7, the last expression
is equal to 1

3(n+1) . This means that, roughly speaking, Bn is almost supported on

the 1√
n
-neighbourhood of the diagonal. A more precise statement is contained in

the following assertion, which is an immediate consequence of Proposition B.10.

Proposition B.12. If (X,Y ) is a random vector distributed according to Bn,
then for all r ≥ 0,

P
{
|X − Y | ≥ r

}
≤ 2 e−(n+1) r2/16 .

Indeed, assuming that Xk is a random variable distributed according to
Bk,n−k+1, and that Yk is an independent copy,

P{|X − Y | ≥ r} =
1

n

n∑
k=1

P
{
|Xk − Yk| ≥ r

}
.

It then remains to apply the second subgaussian bound of Proposition B.10 (which
is independent of k).

A similar application may be developed about Poincaré-type inequalities. Di-
rect consequences of Proposition B.5 and Proposition B.7 are the following Poincaré-
type inequalities for Bn restricted to the class of functions of the form (x, y) �→
u(x)− u(y).

Proposition B.13 (Poincaré-type inequality for mean square beta distribu-
tions). For any absolutely continuous function u on (0, 1),∫ 1

0

∫ 1

0

∣∣u(x)− u(y)
∣∣2 dBn(x, y) ≤ 2

n+ 1

∫ 1

0

x(1− x) u′(x)2 dx.

Moreover, for any p ≥ 1,∫ 1

0

∫ 1

0

∣∣u(x)− u(y)
∣∣p dBn(x, y) ≤

( 5p√
n+ 2

)p
∫ 1

0

(
x(1− x)

)p/2∣∣u′(x)
∣∣p dx.
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To judge sharpness the subgaussian bound of Proposition B.12, one can look
at the behaviour of the measures Bn in the topology of the weak convergence. If
k ∼ t

n with fixed 0 < t < 1, the order statistics U∗
k associated with a sample

(U1, . . . , Un) from the uniform distribution are known to be asymptotically normal.
More precisely, weakly

√
n

(
U∗
k − E(U∗

k )
)

→ N
(
0, t(1− t)

)
, as n → ∞,

where N(0, t(1− t)) is the centered Gaussian measure on the real line with variance

t(1− t). Hence,
√
2n (U∗

k − V ∗
k ) → N(0, t(1 − t)) with V ∗

k an independent copy of
U∗
k . It is not difficult to conclude that, for (X,Y ) distributed according to Bn, we

have
√
2n (X − Y ) →

∫ 1

0

N
(
0, t(1− t)

)
dt as n → ∞.

Being a mixture of Gaussian measures, this limit distribution has tails that are
bounded both from above and from below by the Gaussian tails (up to absolute
factors and scaling parameters).

B.7. Lower-bounds on the beta densities

While Proposition B.13 provides upper integral bounds over the mean square
beta distributions Bn, we now focus on lower-bounds. This section is mostly tech-
nical and deals with pointwise lower-bounds on the densities.

Recall the densities of the beta distributions Bk,n−k+1, k = 1, . . . , n,

pk,n(x) = nCk−1
n−1 x

k−1(1− x)n−k, 0 < x < 1,

and write the density of the mean square beta distribution Bn as

bn(x, y) =
1

n

n∑
k=1

pk,n(x) pk,n(y), 0 < x, y < 1.

The analysis is divided is several steps. To this end, set, for every k = 1, . . . , n,
xk,n = k

n+1 and k∗ = min{k, n− k + 1}.

Lemma B.14. For all 0 < x < 1,

pk,n(x) ≥ 1

e
√
3

n+ 1√
k∗

(
x

xk,n

)k−1 (
1− x

1− xk,n

)n−k

.

Proof. Write

pk,n(x) =
pk,n(x)

pk,n(xk,n)
pk,n(xk,n) = pk,n(xk,n)

(
x

xk,n

)k−1 (
1− x

1− xk,n

)n−k

.

In order to bound pk,n(xk,n) from below, we recall that the k-th order statistic U∗
k

for a sample from the uniform distribution has mean E(U∗
k ) = xk,n and variance

Var(U∗
k ) =

k(n− k + 1)

(n+ 1)2 (n+ 2)
≤ k∗

(n+ 1)2
.
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Applying the third lower-bound (B.8) of Proposition B.2 with X = U∗
k and its

density f = pk,n (which is log-concave), we get

pk,n(xk,n) ≥ 1√
3e2 Var(U∗

k )
≥ 1

e
√
3

n+ 1√
k∗

.

�

The next step is to properly bound the obtained expression in Lemma B.14 for
the values x that are sufficiently close to xk,n.

Lemma B.15. If x(1− x) ≥ 1
n+1 and |x− xk,n| ≤ 4

√
x(1−x)
n+1 (0 < x < 1), then

pk,n(x) ≥ 1

e21
√
3

n+ 1√
k∗

.

Proof. Write xk,n = k
n+1 = x+ εx(1− x), so that

xk,n

x
= 1 + ε(1− x),

1− xk,n

1− x
= 1− εx,

and thus (
x

xk,n

)k−1 (
1− x

1− xk,n

)n−k

= e−A

with
A = (k − 1) log

(
1 + ε(1− x)

)
+ (n− k) log

(
1− εx).

Note that

ε2 =
(x− xk,n)

2

(x(1− x))2
≤ 16

(n+ 1) x(1− x)
≤ 16

in view of the two assumptions on x. Hence, |ε| ≤ 4.
Using the inequality log(1+ z) ≤ z, we have A ≤ [(k− 1)− (n− 1)x] ε. On the

other hand,

(k − 1)− (n− 1)x = (n+ 1)xk,n − (n− 1)x− 1

= (n+ 1)(x+ εx(1− x))− (n− 1)x− 1

= (n+ 1) εx(1− x) + (2x− 1).

Hence, |(k − 1)− (n− 1)x| ≤ 1 + (n+ 1) |ε|x(1− x), and thus

A ≤ |ε|+ (n+ 1) ε2 x(1− x)

≤ 4 + (n+ 1)
(x− xk,n)

2

x(1− x)
≤ 20.

It remains to apply Lemma B.14 to conclude. �

The next lemma provides further lower-bounds on the densities pk,n.

Lemma B.16. Given 0 < t < 1 such that t(1 − t) ≥ 1√
n+1

and | t − k
n+1 | ≤√

t(1−t)
n+1 , we have

pk,n(t+ s) pk,n(t− s) ≥ 1

3e42
(n+ 1)2

k∗
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for all |s| ≤
√

t(1−t)
n+1 .

Proof. We only need to justify the application of Lemma B.15 to the values
x = t + s and y = t − s. Note that n ≥ 15, by the first assumption on t. Since
t ≥ 1√

n+1
and |s| ≤ 1

2
√
n+1

, necessarily t − |s| > 0. Similarly, t + |s| < 1, so that

0 < x, y < 1. Now,

|x− xk,n| ≤
∣∣∣ t− k

n+ 1

∣∣∣ + |s| ≤ 2

√
t(1− t)

n+ 1
≤ 4

√
x(1− x)

n+ 1
.

More precisely, the last inequality is fulfilled if and only if t(1 − t) ≤ 4x(1 − x).
To verify it, consider the function ψ(t) = t(1 − t). It is 1-Lipschitz in the interval
0 ≤ t ≤ 1, so

ψ(x) = ψ(t+ s) ≥ ψ(t)− |s| ≥ ψ(t)−
√

t(1− t)

n+ 1
.

The required inequality will thus follow from 2
√

t(1−t)
n+1 ≤ t(1 − t), hence from

t(1− t) ≥ 4
n+1 . But

4
n+1 ≤ 1√

n+1
≤ t(1− t), and we are done.

To verify the other condition of Lemma B.15, i.e. ψ(x) ≥ 1
n+1 and ψ(y) ≥ 1

n+1 ,
one can return to the previous argument and further note that

ψ(x) ≥ ψ(t)−
√

t(1− t)

n+ 1
≥ t(1− t)− 1

2
√
n+ 1

≥ 1

2
√
n+ 1

>
1

n+ 1
.

Similarly, ψ(y) > 1
n+1 . The proof is complete �

On the basis of the previous lemmas, we are prepared to derive a non-uniform
lower-bound on the density of the random vector (X − Y,X + Y ), when (X,Y ) is
distributed according to Bn.

Lemma B.17. If t(1− t) ≥ 1√
n+1

(0 < t < 1) and |s| ≤
√

t(1−t)
n+1 , then

bn(t+ s, t− s) ≥ e−45

√
n+ 1

t(1− t)
.

Proof. Let us perform summation over all k in the bound of Lemma B.16.
For 0 < t < 1 fixed, the admissible values of k are given by a ≤ k ≤ b, where

a = (n+ 1) t−
√
(n+ 1) t(1− t),

b = (n+ 1) t+
√
(n+ 1) t(1− t).

Hence, restricting ourselves to these values and using that k∗ ≤ k, we obtain by
Lemma B.16 that

bn(t, s) ≥ n+ 1

3e42

∑
a≤k≤b

1

k
.

It remains to estimate the last sum by a simpler expression. Assuming that t ≤ 1
2 ,

note that

D =
√
(n+ 1) t(1− t) ≥ 2,
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since it is the same as t(1− t) ≥ 4
n+1 , which is true, since 4

n+1 ≤ 1√
n+1

≤ t(1− t),

as was already used before (recall that necessarily n ≥ 15). In particular, b−a ≥ 4.
In addition, a > 1 ⇐⇒ (n+ 1)t > 1− t, which is also true.

Now, for integer values a0, b0 that are closest to a, b respectively, and such that
1 ≤ a ≤ a0 ≤ b0 ≤ b, we have∑

a≤k≤b

1

k
=

b0∑
k=a0

1

k
≥

∫ b0

a0

dx

x
= log

b0
a0

≥ log
b− 1

a+ 1
.

But D ≥ 2, so D− 1 ≥ 1
2 D, and thus b− 1 ≥ (n+1) t+ 1

2 D. For a similar reason,
a+ 1 ≤ (n+ 1) t. Hence,∑

a≤k≤b

1

k
≥ log

(n+ 1) t+ 1
2 D

(n+ 1) t
= log(1 + δ), δ =

1

2

√
1− t

(n+ 1) t
.

Here,

δ =
1− t

2

1√
(n+ 1) t(1− t)

≤ 1− t

2

1

(n+ 1)1/4
<

1

4
.

Hence, log(1 + δ) ≥ δ − 1
2 δ

2 > 7
8 δ. As a result,

bn(t, s) ≥ n+ 1

3e42
7

16

√
1− t

(n+ 1) t

≥ (n+ 1)1/2

3e42
7

16

1

2

1√
t(1− t)

>
(n+ 1)1/2

e45
√

t(1− t)
.

The case t ≥ 1
2 is symmetric. Lemma B.17 is established in this way. �

B.8. Lower integral bounds

The pointwise bounds on the densities obtained in the previous section are
used here to derive lower integral bounds over the beta distributions Bk,n−k+1 and
the mean square beta distribution Bn. Such bounds will be given in terms of the
integrals of the form

Ln,κ(u) =

∫
{t(1−t)≥ 4√

n+1
}

[
u(t+ κεn(t))− u(t− κεn(t))

]p
dt, κ > 0,

where we put εn(t) =
√

t(1−t)
n+1 . The main purpose is to prove the following state-

ment.

Proposition B.18 (Lower integral bounds on beta densities). For any non-
decreasing function u on (0, 1) and any p ≥ 1,

(B.14)

∫ 1

0

∫ 1

0

∣∣u(x)− u(y)
∣∣p dBn(x, y) ≥ c Ln,1/2(u)

where c > 0 is an absolute constant. Moreover,

(B.15)
1

n

n∑
k=1

(∫ 1

0

∫ 1

0

∣∣u(x)−u(y)
∣∣ dBk,n−k+1(x) dBk,n−k+1(y)

)p

≥ cp Ln,1/6(u).
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For the proof, recall that Bk,n−k+1 and Bn have respective densities pk,n(x)

and bn(x, y), and that Bk,n−k+1 has mean tk,n = k
n+1 .

Proof of (B.14). After the change of variables x = t+ s, y = t− s, the integral

J =

∫ 1

0

∫ 1

0

∣∣u(x)− u(y)
∣∣p dBn(x, y)

may be rewritten as

J = 2

∫∫
{|s|≤min(t,1−t)}

∣∣u(t+ s)− u(t− s)
∣∣p bn(t+ s, t− s) dt ds.

Restricting this integral to the smaller region R = {|s| ≤ εn(t), t(1 − t) ≥ 1√
n+1

}
and applying Lemma B.17, we get that

J ≥ 2e−45

∫∫
R

∣∣u(t+ s)− u(t− s)
∣∣p √

n+ 1

t(1− t)
dt ds.

Moreover, if we further restrict the integration to the values 1
2 εn(t) ≤ |s| ≤ εn(t),

then in view of the monotonicity of the function u, one may use an s-independent
bound ∣∣u(t+ s)− u(t− s)

∣∣ ≥ u
(
t+

1

2
εn(t)

)
− u

(
t− 1

2
εn(t)

)
.

Hence, after integration over admissible values of s, we arrive at the (B.14) with
constant c = e−45 (and with better region of integration t(1 − t) ≥ 1√

n+1
in com-

parison with the region appearing in the definition of Ln). �

For the second assertion (B.15) in Proposition B.18, we first relate the integrals

Jk =

∫ 1

0

∫ 1

0

∣∣u(x)− u(y)
∣∣ dBk,n−k+1(x) dBk,n−k+1(y)

to the values of u at the points tk,n ± const εn(tk,n).

Lemma B.19. If tk,n(1− tk,n) ≥ 2√
n+1

, then

Jk ≥ 1

60 e42

[
u
(
tk,n +

8

17
εn(tk,n)

)
− u

(
tk,n − 8

17
εn(tk,n)

)]
.

Proof. Again change the variables so that to write the integral Jk as

(B.16) Jk = 2

∫ ∫
{|s|≤min(t,1−t)}

∣∣u(t+ s)− u(t− s)
∣∣ pk,n(t+ s)pk,n(t− s) dt ds.

Denote by Δk,n the collection of all points t ∈ (0, 1) such that

t(1− t) ≥ 1√
n+ 1

and |t− tk,n| ≤
1

4
εn(t).

We restrict the integration in (B.16) to the rectangle Δk,n×
[
3
4 εn(t), εn(t)

]
and use

the monotonicity of the function u (together with the Fubini theorem). The lower
pointwise bound of Lemma B.16

pk,n(t+ s) pk,n(t− s) ≥ 1

3e42
(n+ 1)2

k∗
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then yields

(B.17) Jk ≥ 1

6e42
(n+ 1)2

k∗

∫
Δk,n

[
u
(
t+

3

4
εn(t)

)
− u

(
t− 3

4
εn(t)

)]
εn(t) dt,

where we recall that k∗ = min{k, n− k + 1}.
To simplify the latter integral, first recall that the condition t(1 − t) ≥ 1√

n+1

implies n ≥ 15 which will be assumed (otherwise, Δk,n is empty). The function
εn(t) has derivative

1−2t

2
√

(n+1) t(1−t)
, so that

∣∣ε′n(t)∣∣ ≤ 1

2(n+ 1)1/4
≤ 1

4
, t ∈ Δk,n.

Hence, for all t ∈ Δk,n,

εn(tk,n) ≤ εn(t) +
1

4
|tk,n − t| ≤ 17

16
εn(t) < 2εn(t).

Moreover, for κ > 0,

tk,n + κ εn(tk,n) ≤
(
t+ |tk,n − t|

)
+ κ

(
εn(t) +

1

4
|tk,n − t|

)
≤ t+

4 + 17κ

16
εn(t)

≤ t+
3

4
εn(t)

for κ ≤ 8
17 in the last step. Similarly, for the same range of κ,

tk,n − κ εn(tk,n) ≥
(
t− |tk,n − t|

)
− κ

(
εn(t) +

1

4
|tk,n − t|

)
≥ t− 4 + 17κ

16
εn(t)

≥ t− 3

4
εn(t).

Thus, εn(t) ≥ 1
2 εn(tk,n), and choosing κ = 8

17 , we also have

t+
3

4
εn(t) ≥ tk,n +

8

17
εn(tk,n), t− 3

4
εn(t) ≤ tk,n − 8

17
εn(tk,n).

Using these bounds in the last estimate (B.17) for Jk, we obtain that
(B.18)

Jk ≥ 1

12 e42
(n+ 1)2

k∗
|Δk,n|

[
u
(
tk,n+

8

17
εn(tk,n)

)
−u

(
tk,n−

8

17
εn(tk,n)

)]
εn(tk,n).

Next we need to estimate from below the (Lebesgue) measure |Δk,n| of Δk,n.
Let us see that it contains the interval [tk,n − 1

5 εn(tk,n), tk,n + 1
5 εn(tk,n)]. To this

aim, we should show that

|t− tk,n| ≤
1

5
εn(tk,n) ⇒

(
t(1− t) ≥ 1√

n+ 1
and |t− tk,n| ≤

1

4
εn(t)

)
,

under the condition tk,n(1 − tk,n) ≥ 2√
n+1

. Using the inequality εn(t) ≤ 1
2
√
n+1

holding for all t ∈ (0, 1), the assumption |t−tk,n| ≤ 1
5 εn(tk,n) insures that 0 < t < 1.

Indeed,

t ≥ tk,n − |t− tk,n| ≥
2√
n+ 1

− 1

5
εn(tk,n) ≥ 2√

n+ 1
− 1

10
√
n+ 1

> 0.
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Similarly, t < 1. Moreover, using the Lipschitz property of the function t �→ t(1− t)
on (0, 1), we get that

t(1− t) ≥ tk,n(1− tk,n)− |t− tk,n|

≥ tk,n(1− tk,n)−
1

5
εn(tk,n)

≥ 2√
n+ 1

− 1

10
√
n+ 1

>
1√
n+ 1

.

This gives the first required bound t(1−t) ≥ 1√
n+1

. But this also implies |ε′n(t)| ≤ 1
4 ,

so

εn(t) ≥ εn(tk,n)−
1

4
|t− tk,n| ≥

(
5− 1

4

)
|t− tk,n| ≥ 4 |t− tk,n|,

which yields the second required bound |t− tk,n| ≤ 1
4 εn(t).

As a result, Δk,n contains the interval {t : |tk,n − t| ≤ 1
5 εn(tk,n)}, and thus it

has length

|Δk,n| ≥
2

5
εn(tk,n),

as long as tk,n(1 − tk,n) ≥ 2√
n+1

. Under this condition, we therefore obtain from

(B.18) that

Jk ≥ 1

30 e42
(n+ 1)2

k∗
ε2n(tk,n)

[
u
(
tk,n +

8

17
εn(tk,n)

)
− u

(
tk,n − 8

17
εn(tk,n)

)]
.

Finally,

(n+ 1)2

k∗
ε2n(tk,n) =

k(n− k + 1)

k∗(n+ 1)
≥ 1

2
.

The proof of the lemma is therefore complete. �

On the basis of Lemma B.19, we may now complete the proof of Proposi-
tion B.18.

Proof of (B.15). The region of integration t(1− t) ≥ 4√
n+1

in the definition of Ln

is non-empty, as long as n ≥ 255, so we assume this below.
By Lemma B.19, up to the factor cp with c = 1

60 e
−42, the left-hand side of

(B.15) may be bounded from below by

Σn =
1

n

∑
k

dpk,n, dk,n = u
(
tk,n +

8

17
εn(tk,n)

)
− u

(
tk,n − 8

17
εn(tk,n)

)
,

where the sum is running over all k = 1, . . . , n, such that tk,n(1 − tk,n) ≥ 2√
n+1

.

For such k, consider the intervals δk,n =
[
tk,n − 1

2(n+1) , tk,n + 1
2(n+1)

]
. If t ∈ δk,n,

we have

t(1− t) ≥ tk,n(1− tk,n)−
1

2(n+ 1)
≥ 1√

n+ 1
.
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This gives |ε′n(t)| ≤ 1
4 , and in addition εn(t) =

√
t(1−t)
n+1 ≥ 1

(n+1)3/4
. Hence,

tk,n +
8

17
εn(tk,n) ≥

(
t− |tk,n − t|

)
+

8

17

(
εn(t)−

1

4
|tk,n − t|

)
≥ t+

8

17
εn(t)−

19

17 (n+ 1)

≥ t+
( 8

17
− 19

17 (n+ 1)1/4

)
εn(t) ≥ t+

1

6
εn(t),

where we used (n + 1)1/4 ≥ 4 on the last step. Similarly, tk,n − 8
17 εn(tk,n) ≤

t− 1
6 εn(t). Therefore, applying the monotonicity of u, we get

dpk,n ≥ (n+ 1)

∫
δk,n

[
u
(
t+

1

6
εn(t)

)
− u

(
t− 1

6
εn(t)

)]p

dt.

It remains to perform summation over k and note that the union of admissible
intervals δk,n contains the interval t(1−t) ≥ 4√

n+1
. Indeed, given any such t, choose

k so that t ∈ δk,n. Then,

tk,n(1− tk,n) ≥ t(1− t)− |t− tk,n| ≥
4√
n+ 1

− 1

2(n+ 1)
≥ 2√

n+ 1
.

As a result,

Σn ≥ n+ 1

n

∫
{t(1−t)≥ 4√

n+1
}

[
u
(
t+

1

6
εn(t)

)
− u

(
t− 1

6
εn(t)

)]p

dt.

Inequality (B.15) is proved. �
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[C-H] M. Csörgő and L. Horváth, Weighted approximations in probability and statis-
tics, Wiley Series in Probability and Mathematical Statistics: Probability and
Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1993. With a
foreword by David Kendall. MR1215046
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maries), Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013), no. 4, 1183–1203.
MR3127919
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Algebra Geom. 40 (1999), no. 1, 163–183. MR1678528

[FG15] N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance
of the empirical measure, Probab. Theory Related Fields 162 (2015), no. 3-4,
707–738. MR3383341

[Ga] J. Galambos, The asymptotic theory of extreme order statistics, 2nd ed., Robert
E. Krieger Publishing Co., Inc., Melbourne, FL, 1987. MR936631
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Stat. 45 (2009), no. 3, 802–817. MR2548505
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